Accumulated BCAAs and BCKAs contribute to the HFD-induced deterioration of Alzheimer's disease via a dysfunctional TREM2-related reduction in microglial β-amyloid clearance.
Yang Yang, Guanjin Shi, Yanyan Ge, Shanshan Huang, Ningning Cui, Le Tan, Rui Liu, Xuefeng Yang
{"title":"Accumulated BCAAs and BCKAs contribute to the HFD-induced deterioration of Alzheimer's disease via a dysfunctional TREM2-related reduction in microglial β-amyloid clearance.","authors":"Yang Yang, Guanjin Shi, Yanyan Ge, Shanshan Huang, Ningning Cui, Le Tan, Rui Liu, Xuefeng Yang","doi":"10.1186/s12974-024-03314-1","DOIUrl":null,"url":null,"abstract":"<p><p>A high-fat diet (HFD) induces obesity and insulin resistance, which may exacerbate amyloid-β peptide (Aβ) pathology during Alzheimer's disease (AD) progression. Branched-chain amino acids (BCAAs) accumulate in obese or insulin-resistant patients and animal models. However, roles of accumulated BCAAs and their metabolites, branched-chain keto acids (BCKAs), in the HFD-induced deterioration of AD and the underlying mechanisms remains largely unclear. In this study, APPswe/PSEN1dE9 (APP/PS1) transgenic mice were fed a HFD for 6 months, and the BCAAs content of the HFD was adjusted to 200% or 50% to determine the effects of BCAAs. The HFD-fed APP/PS1 mice accumulated BCAAs and BCKAs in the serum and cortex, which was accompanied by more severe cognitive deficits and AD-related pathology. The additional or restricted intake of BCAAs aggravated or reversed these phenomena. Importantly, BCAAs and BCKAs repressed microglial phagocytosis of Aβ in vivo and in BV2 cells, which might be relevant for triggering receptor expressed on myeloid cells 2 (TREM2) dysfunction and autophagy deficiency. We found that BCAAs and BCKAs could bind to TREM2 in silico, in pure protein solutions and in the cellular environment. These molecules competed with Aβ for binding to TREM2 so that the response of TREM2 to Aβ was impaired. Moreover, BCAAs and BCKAs decreased TREM2 recycling in an mTOR-independent manner, which might also lead to TREM2 dysfunction. Our findings suggest that accumulated BCAAs and BCKAs contribute to the HFD-induced acceleration of AD progression through hypofunctional TREM2-mediated disturbances in Aβ clearance in microglia. Lowering BCAAs and BCKAs levels may become a potential dietary intervention for AD.</p>","PeriodicalId":16577,"journal":{"name":"Journal of Neuroinflammation","volume":"21 1","pages":"327"},"PeriodicalIF":9.3000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroinflammation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12974-024-03314-1","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
A high-fat diet (HFD) induces obesity and insulin resistance, which may exacerbate amyloid-β peptide (Aβ) pathology during Alzheimer's disease (AD) progression. Branched-chain amino acids (BCAAs) accumulate in obese or insulin-resistant patients and animal models. However, roles of accumulated BCAAs and their metabolites, branched-chain keto acids (BCKAs), in the HFD-induced deterioration of AD and the underlying mechanisms remains largely unclear. In this study, APPswe/PSEN1dE9 (APP/PS1) transgenic mice were fed a HFD for 6 months, and the BCAAs content of the HFD was adjusted to 200% or 50% to determine the effects of BCAAs. The HFD-fed APP/PS1 mice accumulated BCAAs and BCKAs in the serum and cortex, which was accompanied by more severe cognitive deficits and AD-related pathology. The additional or restricted intake of BCAAs aggravated or reversed these phenomena. Importantly, BCAAs and BCKAs repressed microglial phagocytosis of Aβ in vivo and in BV2 cells, which might be relevant for triggering receptor expressed on myeloid cells 2 (TREM2) dysfunction and autophagy deficiency. We found that BCAAs and BCKAs could bind to TREM2 in silico, in pure protein solutions and in the cellular environment. These molecules competed with Aβ for binding to TREM2 so that the response of TREM2 to Aβ was impaired. Moreover, BCAAs and BCKAs decreased TREM2 recycling in an mTOR-independent manner, which might also lead to TREM2 dysfunction. Our findings suggest that accumulated BCAAs and BCKAs contribute to the HFD-induced acceleration of AD progression through hypofunctional TREM2-mediated disturbances in Aβ clearance in microglia. Lowering BCAAs and BCKAs levels may become a potential dietary intervention for AD.
期刊介绍:
The Journal of Neuroinflammation is a peer-reviewed, open access publication that emphasizes the interaction between the immune system, particularly the innate immune system, and the nervous system. It covers various aspects, including the involvement of CNS immune mediators like microglia and astrocytes, the cytokines and chemokines they produce, and the influence of peripheral neuro-immune interactions, T cells, monocytes, complement proteins, acute phase proteins, oxidative injury, and related molecular processes.
Neuroinflammation is a rapidly expanding field that has significantly enhanced our knowledge of chronic neurological diseases. It attracts researchers from diverse disciplines such as pathology, biochemistry, molecular biology, genetics, clinical medicine, and epidemiology. Substantial contributions to this field have been made through studies involving populations, patients, postmortem tissues, animal models, and in vitro systems.
The Journal of Neuroinflammation consolidates research that centers around common pathogenic processes. It serves as a platform for integrative reviews and commentaries in this field.