Methodological approach for fast high-resolution image selection: FAHRIS algorithm.

IF 1.6 Q2 MULTIDISCIPLINARY SCIENCES
MethodsX Pub Date : 2024-11-28 eCollection Date: 2024-12-01 DOI:10.1016/j.mex.2024.103072
Bjørnar Åsebø, Stefano Cavazzani, Chiara Bertolin, Carlo Bettanini, Giampaolo Fusato, Andrea Bertolo, Pietro Fiorentin
{"title":"Methodological approach for fast high-resolution image selection: FAHRIS algorithm.","authors":"Bjørnar Åsebø, Stefano Cavazzani, Chiara Bertolin, Carlo Bettanini, Giampaolo Fusato, Andrea Bertolo, Pietro Fiorentin","doi":"10.1016/j.mex.2024.103072","DOIUrl":null,"url":null,"abstract":"<p><p>Recent research highlights advancements in collecting Artificial Light at Night (ALAN) data using radiosondes on stratospheric balloons, revealing a need for enhanced in-flight image stabilization. This paper proposes a twofold approach: Firstly, it introduces a design concept for a high-resolution image acquisition and stabilization system for aerial instruments (e.g., drones, balloons). Secondly, it presents a novel Fast Algorithm for High-Resolution Image Selection (FAHRIS) for rapid image selection, grouping and stitching of acquired imagery. FAHRIS' effectiveness is validated using datasets from three flights over Italy: a stratospheric balloon flight reaching 34 kms over Florence, and drone flights using a DJI Mavic 2 up to 253 m over Trevisoand 330 m over Padua. Limitations and challenges encountered during the validation of FAHRIS, such as computational constraints affecting dataset processing, are addressed. Additionally, the results of the image stitching process highlight potential distortions and stretching issues, particularly evident in images with significant relative angles.•Design proposition of stabilization system for aerial instruments.•Development of a novel and fast image selection, grouping and stitching algorithm (FAHRIS).•Validation of algorithm against data sets from three flights.</p>","PeriodicalId":18446,"journal":{"name":"MethodsX","volume":"13 ","pages":"103072"},"PeriodicalIF":1.6000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11664006/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MethodsX","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.mex.2024.103072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Recent research highlights advancements in collecting Artificial Light at Night (ALAN) data using radiosondes on stratospheric balloons, revealing a need for enhanced in-flight image stabilization. This paper proposes a twofold approach: Firstly, it introduces a design concept for a high-resolution image acquisition and stabilization system for aerial instruments (e.g., drones, balloons). Secondly, it presents a novel Fast Algorithm for High-Resolution Image Selection (FAHRIS) for rapid image selection, grouping and stitching of acquired imagery. FAHRIS' effectiveness is validated using datasets from three flights over Italy: a stratospheric balloon flight reaching 34 kms over Florence, and drone flights using a DJI Mavic 2 up to 253 m over Trevisoand 330 m over Padua. Limitations and challenges encountered during the validation of FAHRIS, such as computational constraints affecting dataset processing, are addressed. Additionally, the results of the image stitching process highlight potential distortions and stretching issues, particularly evident in images with significant relative angles.•Design proposition of stabilization system for aerial instruments.•Development of a novel and fast image selection, grouping and stitching algorithm (FAHRIS).•Validation of algorithm against data sets from three flights.

快速高分辨率图像选择方法:FAHRIS算法。
最近的研究强调了在平流层气球上使用无线电探空仪收集夜间人造光(ALAN)数据的进展,表明需要增强飞行中的图像稳定。本文提出了两种方法:首先,介绍了用于航空仪器(如无人机、气球)的高分辨率图像采集和稳定系统的设计概念。其次,提出了一种新的快速高分辨率图像选择算法(Fast Algorithm for High-Resolution Image Selection, FAHRIS),对获取的图像进行快速的图像选择、分组和拼接。FAHRIS的有效性通过意大利三次飞行的数据集得到验证:佛罗伦萨上空34公里的平流层气球飞行,以及特雷维索上空253米和帕多瓦上空330米的大ji Mavic 2无人机飞行。解决了FAHRIS验证过程中遇到的限制和挑战,例如影响数据集处理的计算约束。此外,图像拼接过程的结果突出了潜在的扭曲和拉伸问题,特别是在具有显著相对角度的图像中。•航空仪表稳定系统设计主张。•开发了一种新的快速图像选择、分组和拼接算法(FAHRIS)。•针对三次飞行的数据集验证算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
MethodsX
MethodsX Health Professions-Medical Laboratory Technology
CiteScore
3.60
自引率
5.30%
发文量
314
审稿时长
7 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信