{"title":"Deafness-associated mitochondrial 12S rRNA mutation reshapes mitochondrial and cellular homeostasis.","authors":"Yunfan He, Zhining Tang, Gao Zhu, Luhang Cai, Chao Chen, Min-Xin Guan","doi":"10.1016/j.jbc.2024.108124","DOIUrl":null,"url":null,"abstract":"<p><p>Human mitochondrial 12S ribosomal RNA (rRNA) 1555A>G mutation has been associated with aminoglycoside-induced and nonsyndromic deafness in many families worldwide. Our previous investigation revealed that the m.1555A>G mutation impaired mitochondrial translation and oxidative phosphorylation (OXPHOS). However, the mechanisms by which mitochondrial dysfunctions induced by m.1555A>G mutation regulate intracellular signaling for mitochondrial and cellular integrity remain poorly understood. Here, we demonstrated that the m.1555A>G mutation downregulated the expression of nuclear-encoded subunits of complexes I and IV but upregulated the expression of assemble factors for OXPHOS complexes, using cybrids derived from one hearing-impaired Chinese subject bearing the m.1555A>G mutation and from one hearing normal control lacking the mutation. These alterations resulted in the aberrant assembly, instability and reduced activities of respiratory chain enzyme complexes I, IV and V, rate of oxygen consumption, and diminished ATP production. Furthermore, the mutant cell lines carrying the m.1555A>G mutation exhibited decreased membrane potential and increased the production of reactive oxygen species. The aberrant assembly and biogenesis of OXPHOS impacted mitochondrial quality controls, including the imbalance of mitochondrial dynamics via increasing fission with abnormal mitochondrial morphology and impaired mitophagy. Strikingly, the cells bearing the m.1555A>G mutation revealed the upregulation of both ubiquitin-dependent and independent mitophagy pathways, evidenced by increasing the levels of Parkin, Pink, BNIP3L and NIX. The m.1555A>G mutation-induced deficiencies ameliorate the cell homeostasis via elevating the autophagy process and upregulating apoptotic pathways. Our findings provide new insights into pathophysiology of mitochondrial deafness arising from reshaping mitochondrial and cellular homeostasis due to 12S rRNA 1555A>G mutation.</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":" ","pages":"108124"},"PeriodicalIF":4.0000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2024.108124","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Human mitochondrial 12S ribosomal RNA (rRNA) 1555A>G mutation has been associated with aminoglycoside-induced and nonsyndromic deafness in many families worldwide. Our previous investigation revealed that the m.1555A>G mutation impaired mitochondrial translation and oxidative phosphorylation (OXPHOS). However, the mechanisms by which mitochondrial dysfunctions induced by m.1555A>G mutation regulate intracellular signaling for mitochondrial and cellular integrity remain poorly understood. Here, we demonstrated that the m.1555A>G mutation downregulated the expression of nuclear-encoded subunits of complexes I and IV but upregulated the expression of assemble factors for OXPHOS complexes, using cybrids derived from one hearing-impaired Chinese subject bearing the m.1555A>G mutation and from one hearing normal control lacking the mutation. These alterations resulted in the aberrant assembly, instability and reduced activities of respiratory chain enzyme complexes I, IV and V, rate of oxygen consumption, and diminished ATP production. Furthermore, the mutant cell lines carrying the m.1555A>G mutation exhibited decreased membrane potential and increased the production of reactive oxygen species. The aberrant assembly and biogenesis of OXPHOS impacted mitochondrial quality controls, including the imbalance of mitochondrial dynamics via increasing fission with abnormal mitochondrial morphology and impaired mitophagy. Strikingly, the cells bearing the m.1555A>G mutation revealed the upregulation of both ubiquitin-dependent and independent mitophagy pathways, evidenced by increasing the levels of Parkin, Pink, BNIP3L and NIX. The m.1555A>G mutation-induced deficiencies ameliorate the cell homeostasis via elevating the autophagy process and upregulating apoptotic pathways. Our findings provide new insights into pathophysiology of mitochondrial deafness arising from reshaping mitochondrial and cellular homeostasis due to 12S rRNA 1555A>G mutation.
期刊介绍:
The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.