A comprehensive dataset of near infrared spectroscopy measurements to predict nitrogen and carbon contents in a wide range of tissues from Brassica napus plants grown under contrasted environments.
Sophie Rolland, Françoise Leprince, Solenn Guichard, Françoise Le Cahérec, Anne Laperche, Nathalie Nesi
{"title":"A comprehensive dataset of near infrared spectroscopy measurements to predict nitrogen and carbon contents in a wide range of tissues from <i>Brassica napus</i> plants grown under contrasted environments.","authors":"Sophie Rolland, Françoise Leprince, Solenn Guichard, Françoise Le Cahérec, Anne Laperche, Nathalie Nesi","doi":"10.1016/j.dib.2024.111163","DOIUrl":null,"url":null,"abstract":"<p><p>Winter oilseed rape (WOSR, <i>Brassica napus</i> L.) is the third largest oil crop worldwide that also provides a source of high quality plant-based proteins. Nitrogen (N) and carbon (C) play a key role in plant growth. Determination of N and C contents of plant tissues throughout the growth cycle is crucial in assessing plant nutritional status and allowing precise input management. In the dataset presented in this article, 2427 WOSR samples arising from a large diversity of tissues collected on WOSR diversity were analyzed by near infrared spectroscopy from 4000 to 12,000 cm<sup>-1</sup>. At the same time, reference chemical data for the N and C contents of the same samples were determined by elemental analysis using the Dumas method. Partial least squares regression has been used to develop predictive models linking spectral and chemical data, so that new samples can be characterized without the need for reference methods. This dataset could be used to test new calculation algorithms in order to enhance prediction performance or for training purposes. These models can be used as a rapid method for determining N and/or C content, adding to decision-support tools for fertilizer application throughout the plant developmental cycle.</p>","PeriodicalId":10973,"journal":{"name":"Data in Brief","volume":"57 ","pages":"111163"},"PeriodicalIF":1.0000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11663971/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data in Brief","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.dib.2024.111163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Winter oilseed rape (WOSR, Brassica napus L.) is the third largest oil crop worldwide that also provides a source of high quality plant-based proteins. Nitrogen (N) and carbon (C) play a key role in plant growth. Determination of N and C contents of plant tissues throughout the growth cycle is crucial in assessing plant nutritional status and allowing precise input management. In the dataset presented in this article, 2427 WOSR samples arising from a large diversity of tissues collected on WOSR diversity were analyzed by near infrared spectroscopy from 4000 to 12,000 cm-1. At the same time, reference chemical data for the N and C contents of the same samples were determined by elemental analysis using the Dumas method. Partial least squares regression has been used to develop predictive models linking spectral and chemical data, so that new samples can be characterized without the need for reference methods. This dataset could be used to test new calculation algorithms in order to enhance prediction performance or for training purposes. These models can be used as a rapid method for determining N and/or C content, adding to decision-support tools for fertilizer application throughout the plant developmental cycle.
期刊介绍:
Data in Brief provides a way for researchers to easily share and reuse each other''s datasets by publishing data articles that: -Thoroughly describe your data, facilitating reproducibility. -Make your data, which is often buried in supplementary material, easier to find. -Increase traffic towards associated research articles and data, leading to more citations. -Open up doors for new collaborations. Because you never know what data will be useful to someone else, Data in Brief welcomes submissions that describe data from all research areas.