Structural and functional insights into recombinant β-glucosidase from Thermothelomyces thermophilus: Cello-oligosaccharide hydrolysis and thermostability.

IF 3.4 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Ana Luiza da Rocha Fortes Saraiva, Gabriela Leila Berto, Bianca Oliva, Paula Macedo Cunha, Lucas Ramos, Leandro Cristante de Oliveira, Fernando Segato
{"title":"Structural and functional insights into recombinant β-glucosidase from Thermothelomyces thermophilus: Cello-oligosaccharide hydrolysis and thermostability.","authors":"Ana Luiza da Rocha Fortes Saraiva, Gabriela Leila Berto, Bianca Oliva, Paula Macedo Cunha, Lucas Ramos, Leandro Cristante de Oliveira, Fernando Segato","doi":"10.1016/j.enzmictec.2024.110572","DOIUrl":null,"url":null,"abstract":"<p><p>β-glucosidases (BGLs) are key enzymes in the depolymerization of cellulosic biomass, catalyzing the conversion of cello-oligosaccharides into glucose. This conversion is pivotal for enhancing the production of second-generation ethanol or other value-added products in biorefineries. However, the process is often cost-prohibitive due to the high enzyme loadings required. Therefore, the discovery of new highly efficient BGLs represents a significant advancement. In this study, a BGL from the glycoside hydrolase family 3 (GH3) of the thermophilic fungus Thermothelomyces thermophilus (TthBgl3A) was heterologously expressed in Aspergillus nidulans. The recombinant enzyme exhibited optimal activity at pH 5.0 and 55 °C, with noteworthy stability for up to 160 h. A distinctive, extensive loop within the catalytic cavity of TthBgl3A facilitates hydrophobic interactions that enhance the binding and hydrolysis of long cello-oligosaccharides. Consequently, TthBgl3A has proven to be an efficient enzyme for the hydrolysis lignocellulosic biomass. These findings are significant for expanding the repertoire of enzymes produced by T. thermophilus and provide new insights into the potential application of TthBgl3A in the degradation of cellulosic materials and the production of valuable compounds.</p>","PeriodicalId":11770,"journal":{"name":"Enzyme and Microbial Technology","volume":"184 ","pages":"110572"},"PeriodicalIF":3.4000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Enzyme and Microbial Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.enzmictec.2024.110572","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

β-glucosidases (BGLs) are key enzymes in the depolymerization of cellulosic biomass, catalyzing the conversion of cello-oligosaccharides into glucose. This conversion is pivotal for enhancing the production of second-generation ethanol or other value-added products in biorefineries. However, the process is often cost-prohibitive due to the high enzyme loadings required. Therefore, the discovery of new highly efficient BGLs represents a significant advancement. In this study, a BGL from the glycoside hydrolase family 3 (GH3) of the thermophilic fungus Thermothelomyces thermophilus (TthBgl3A) was heterologously expressed in Aspergillus nidulans. The recombinant enzyme exhibited optimal activity at pH 5.0 and 55 °C, with noteworthy stability for up to 160 h. A distinctive, extensive loop within the catalytic cavity of TthBgl3A facilitates hydrophobic interactions that enhance the binding and hydrolysis of long cello-oligosaccharides. Consequently, TthBgl3A has proven to be an efficient enzyme for the hydrolysis lignocellulosic biomass. These findings are significant for expanding the repertoire of enzymes produced by T. thermophilus and provide new insights into the potential application of TthBgl3A in the degradation of cellulosic materials and the production of valuable compounds.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Enzyme and Microbial Technology
Enzyme and Microbial Technology 生物-生物工程与应用微生物
CiteScore
7.60
自引率
5.90%
发文量
142
审稿时长
38 days
期刊介绍: Enzyme and Microbial Technology is an international, peer-reviewed journal publishing original research and reviews, of biotechnological significance and novelty, on basic and applied aspects of the science and technology of processes involving the use of enzymes, micro-organisms, animal cells and plant cells. We especially encourage submissions on: Biocatalysis and the use of Directed Evolution in Synthetic Biology and Biotechnology Biotechnological Production of New Bioactive Molecules, Biomaterials, Biopharmaceuticals, and Biofuels New Imaging Techniques and Biosensors, especially as applicable to Healthcare and Systems Biology New Biotechnological Approaches in Genomics, Proteomics and Metabolomics Metabolic Engineering, Biomolecular Engineering and Nanobiotechnology Manuscripts which report isolation, purification, immobilization or utilization of organisms or enzymes which are already well-described in the literature are not suitable for publication in EMT, unless their primary purpose is to report significant new findings or approaches which are of broad biotechnological importance. Similarly, manuscripts which report optimization studies on well-established processes are inappropriate. EMT does not accept papers dealing with mathematical modeling unless they report significant, new experimental data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信