The competition between cation-anion and cation-triglyme interaction in solvate ionic liquids probed by far infrared spectroscopy and molecular dynamics simulations.

IF 2.3 3区 化学 Q3 CHEMISTRY, PHYSICAL
Jule Kristin Philipp, Koichi Fumino, Andreas Appelhagen, Dietmar Paschek, Ralf Ludwig
{"title":"The competition between cation-anion and cation-triglyme interaction in solvate ionic liquids probed by far infrared spectroscopy and molecular dynamics simulations.","authors":"Jule Kristin Philipp, Koichi Fumino, Andreas Appelhagen, Dietmar Paschek, Ralf Ludwig","doi":"10.1002/cphc.202400991","DOIUrl":null,"url":null,"abstract":"<p><p>Glyme-based electrolyte solutions provide new concepts for developing suitable lithium-ion batteries. The so-called solvate ionic liquids (SILs) are promising electrolytes. They are most efficient in equimolar mixtures of lithium bis(trifluoromethanesulfonyl)imide ([Li][NTf2]) and glyme, wherein the [Li]+ cation is supposedly fully solvated by glyme molecules. Here, we performed far (FIR) and mid (MIR) infrared spectroscopy for probing the solvation and local structures around the [Li]+ ions. In particular, we studied the competition between the triglyme molecule and the salt anions for the coordination to the lithium cations with increasing [Li][NTf2] concentration. The formation of nano structures in the [Li][NTf2]:G3 mixtures is discussed in terms of contact (CIP) and solvent-separated (SIP) ion pairs in solution. At low salt concentrations, the [Li]+ cations are solvated by two triglyme molecules resulting in SIPs only. With increasing salt concentration, [Li]+ is predominantly solvated by one triglyme molecule as [Li(glyme)1]+ but still remains in contact to one of the four oxygen atoms of the [NTf2]- anion. Molecular dynamics (MD) simulations provide a molecular picture of the [Li][NTf2]:G3 mixtures that supports the conclusions drawn from the experimental findings.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202400991"},"PeriodicalIF":2.3000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemphyschem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cphc.202400991","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Glyme-based electrolyte solutions provide new concepts for developing suitable lithium-ion batteries. The so-called solvate ionic liquids (SILs) are promising electrolytes. They are most efficient in equimolar mixtures of lithium bis(trifluoromethanesulfonyl)imide ([Li][NTf2]) and glyme, wherein the [Li]+ cation is supposedly fully solvated by glyme molecules. Here, we performed far (FIR) and mid (MIR) infrared spectroscopy for probing the solvation and local structures around the [Li]+ ions. In particular, we studied the competition between the triglyme molecule and the salt anions for the coordination to the lithium cations with increasing [Li][NTf2] concentration. The formation of nano structures in the [Li][NTf2]:G3 mixtures is discussed in terms of contact (CIP) and solvent-separated (SIP) ion pairs in solution. At low salt concentrations, the [Li]+ cations are solvated by two triglyme molecules resulting in SIPs only. With increasing salt concentration, [Li]+ is predominantly solvated by one triglyme molecule as [Li(glyme)1]+ but still remains in contact to one of the four oxygen atoms of the [NTf2]- anion. Molecular dynamics (MD) simulations provide a molecular picture of the [Li][NTf2]:G3 mixtures that supports the conclusions drawn from the experimental findings.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemphyschem
Chemphyschem 化学-物理:原子、分子和化学物理
CiteScore
4.60
自引率
3.40%
发文量
425
审稿时长
1.1 months
期刊介绍: ChemPhysChem is one of the leading chemistry/physics interdisciplinary journals (ISI Impact Factor 2018: 3.077) for physical chemistry and chemical physics. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies. ChemPhysChem is an international source for important primary and critical secondary information across the whole field of physical chemistry and chemical physics. It integrates this wide and flourishing field ranging from Solid State and Soft-Matter Research, Electro- and Photochemistry, Femtochemistry and Nanotechnology, Complex Systems, Single-Molecule Research, Clusters and Colloids, Catalysis and Surface Science, Biophysics and Physical Biochemistry, Atmospheric and Environmental Chemistry, and many more topics. ChemPhysChem is peer-reviewed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信