Highly efficient and conductive in-situ assembled VS4-VO2 on reduced Graphene-oxide as advanced cathode materials for thermal batteries.

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL
Journal of Colloid and Interface Science Pub Date : 2025-04-01 Epub Date: 2024-12-20 DOI:10.1016/j.jcis.2024.12.134
Xin-Ya Bu, Yan-Li Zhu, Yu Xia, Bin-Chao Shi, Shu Zhang, Xiao-Yu Wei, Jing Luo, Yi Zhang, Ting Quan
{"title":"Highly efficient and conductive in-situ assembled VS<sub>4</sub>-VO<sub>2</sub> on reduced Graphene-oxide as advanced cathode materials for thermal batteries.","authors":"Xin-Ya Bu, Yan-Li Zhu, Yu Xia, Bin-Chao Shi, Shu Zhang, Xiao-Yu Wei, Jing Luo, Yi Zhang, Ting Quan","doi":"10.1016/j.jcis.2024.12.134","DOIUrl":null,"url":null,"abstract":"<p><p>Thermal batteries are a type of thermally activated reserve batteries, where the cathode material significantly influences the operating voltage and specific capacity of the battery. In this work, VS<sub>4</sub>-VO<sub>2</sub> has been synthesized through the hydrothermal method and used as the cathode material for thermal batteries. Firstly, the material with the VS<sub>4</sub> crystallinity is obtained at 170 °C and the mass percentages of VS<sub>4</sub>/VO<sub>2</sub> are 63.1 % and 36.9 %, respectively. The formation mechanism of VS<sub>4</sub>-VO<sub>2</sub> has been proposed based on in-situ ultraviolet (UV) spectrum, which shows that the hydrolysis product S<sup>2-</sup> under alkaline conditions promotes the formation of VS<sub>4</sub>. To further improve the conductivity of the material, the reduced graphene oxide (rGO) has been introduced into VS<sub>4</sub>-VO<sub>2</sub> nanomaterials. When applied in thermal batteries, the rGO-VS<sub>4</sub>-VO<sub>2</sub> composite exhibits a voltage plateau of approximately 2.4 V and a discharging specific capacity of 327 mAh/g with the cut-off voltage of 1.5 V at 50 mA and 350°C, which are higher than those of VS<sub>4</sub>-VO<sub>2</sub>. Furthermore, the discharge mechanisms of rGO-VS<sub>4</sub>-VO<sub>2</sub> in thermal batteries have been analyzed, which indicates that VS<sub>4</sub>-VO<sub>2</sub> involves two processes of phase transformation, including the intercalation process and conversion process. The results confirm rGO-VS<sub>4</sub>-VO<sub>2</sub> as a promising cathode material for thermal batteries.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"683 Pt 1","pages":"973-983"},"PeriodicalIF":9.4000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcis.2024.12.134","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Thermal batteries are a type of thermally activated reserve batteries, where the cathode material significantly influences the operating voltage and specific capacity of the battery. In this work, VS4-VO2 has been synthesized through the hydrothermal method and used as the cathode material for thermal batteries. Firstly, the material with the VS4 crystallinity is obtained at 170 °C and the mass percentages of VS4/VO2 are 63.1 % and 36.9 %, respectively. The formation mechanism of VS4-VO2 has been proposed based on in-situ ultraviolet (UV) spectrum, which shows that the hydrolysis product S2- under alkaline conditions promotes the formation of VS4. To further improve the conductivity of the material, the reduced graphene oxide (rGO) has been introduced into VS4-VO2 nanomaterials. When applied in thermal batteries, the rGO-VS4-VO2 composite exhibits a voltage plateau of approximately 2.4 V and a discharging specific capacity of 327 mAh/g with the cut-off voltage of 1.5 V at 50 mA and 350°C, which are higher than those of VS4-VO2. Furthermore, the discharge mechanisms of rGO-VS4-VO2 in thermal batteries have been analyzed, which indicates that VS4-VO2 involves two processes of phase transformation, including the intercalation process and conversion process. The results confirm rGO-VS4-VO2 as a promising cathode material for thermal batteries.

在还原氧化石墨烯上原位组装高效导电的v4 - vo2作为热电池的先进正极材料。
热电池是一种热激活备用电池,其正极材料对电池的工作电压和比容量有显著影响。本文采用水热法合成了VS4-VO2,并将其作为热电池的正极材料。首先,在170℃的温度下得到了具有VS4结晶度的材料,其中VS4/VO2的质量百分比分别为63.1%和36.9%。基于原位紫外(UV)光谱分析提出了VS4- vo2的形成机理,结果表明碱性条件下水解产物S2-促进了VS4的形成。为了进一步提高材料的导电性,将还原氧化石墨烯(rGO)引入到v4 - vo2纳米材料中。应用于热电池时,rgo - v4 - vo2复合材料表现出约2.4 V的电压平台和327 mAh/g的放电比容量,在50 mA和350℃下的截止电压为1.5 V,高于v4 - vo2。进一步分析了rgo - v4 - vo2在热电池中的放电机理,表明v4 - vo2涉及两个相变过程,即插层过程和转化过程。结果证实了rgo - v4 - vo2是一种很有前途的热电池正极材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
文献相关原料
公司名称
产品信息
阿拉丁
Sodium vanadate (Na3VO4)
阿拉丁
Sodium vanadate (Na3VO4)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信