{"title":"Intestinal organoid co-culture systems: current approaches, challenges, and future directions.","authors":"Ghanyah Al-Qadami, Anita Raposo, Chia-Chi Chien, Chenkai Ma, Ilka Priebe, Maryam Hor, Kim Fung","doi":"10.1152/ajpgi.00203.2024","DOIUrl":null,"url":null,"abstract":"<p><p>The intestinal microenvironment represents a complex and dynamic ecosystem, comprising a diverse range of epithelial and non-epithelial cells, a protective mucus layer, and a diverse community of gut microbiota. Understanding the intricate interplay between these components is essential for uncovering the mechanisms underlying intestinal health and disease. The development of intestinal organoids, 3D mini-intestines that closely mimic the architecture, cellular diversity, and functionality of the intestine, offers a powerful platform for investigating different aspects of intestinal physiology and pathology. However, current intestinal organoid models, mainly adult stem cell-derived organoids, lack the non-epithelial and microbial components of the intestinal microenvironment. As such, several co-culture systems have been developed to co-culture intestinal organoids with other intestinal elements including microbes (bacteria and viruses) and immune, stromal, and neural cells. These co-culture models allow researchers to recreate the complex intestinal environment and study the intricate crosstalk between different components of the intestinal ecosystem under healthy and pathological conditions. Currently, there are several approaches and methodologies to establish intestinal organoid co-cultures, and each approach has its own strengths and limitations. This review discusses the existing methods for co-culturing intestinal organoids with different intestinal elements, focusing on the methodological approaches, strengths and limitations, and future directions.</p>","PeriodicalId":7725,"journal":{"name":"American journal of physiology. Gastrointestinal and liver physiology","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Gastrointestinal and liver physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpgi.00203.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The intestinal microenvironment represents a complex and dynamic ecosystem, comprising a diverse range of epithelial and non-epithelial cells, a protective mucus layer, and a diverse community of gut microbiota. Understanding the intricate interplay between these components is essential for uncovering the mechanisms underlying intestinal health and disease. The development of intestinal organoids, 3D mini-intestines that closely mimic the architecture, cellular diversity, and functionality of the intestine, offers a powerful platform for investigating different aspects of intestinal physiology and pathology. However, current intestinal organoid models, mainly adult stem cell-derived organoids, lack the non-epithelial and microbial components of the intestinal microenvironment. As such, several co-culture systems have been developed to co-culture intestinal organoids with other intestinal elements including microbes (bacteria and viruses) and immune, stromal, and neural cells. These co-culture models allow researchers to recreate the complex intestinal environment and study the intricate crosstalk between different components of the intestinal ecosystem under healthy and pathological conditions. Currently, there are several approaches and methodologies to establish intestinal organoid co-cultures, and each approach has its own strengths and limitations. This review discusses the existing methods for co-culturing intestinal organoids with different intestinal elements, focusing on the methodological approaches, strengths and limitations, and future directions.
期刊介绍:
The American Journal of Physiology-Gastrointestinal and Liver Physiology publishes original articles pertaining to all aspects of research involving normal or abnormal function of the gastrointestinal tract, hepatobiliary system, and pancreas. Authors are encouraged to submit manuscripts dealing with growth and development, digestion, secretion, absorption, metabolism, and motility relative to these organs, as well as research reports dealing with immune and inflammatory processes and with neural, endocrine, and circulatory control mechanisms that affect these organs.