Tackling Biofilm Resistance of Gram-Positive and Gram-Negative Bacteria Against Levofloxacin via Nanotechnology and Essential Oils

IF 2.7 4区 医学 Q2 PHARMACOLOGY & PHARMACY
Sarhan Omnia Mohamed
{"title":"Tackling Biofilm Resistance of Gram-Positive and Gram-Negative Bacteria Against Levofloxacin via Nanotechnology and Essential Oils","authors":"Sarhan Omnia Mohamed","doi":"10.1007/s12247-024-09891-1","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction</h3><p>The generation of biofilms by bacteria has become a major factor in the rise of antibiotic resistance. Lipid nano-capsules (LNCs) have recently emerged as an innovative platform for drug delivery, due to their unique properties and ability to carry a wide array of therapeutic chemical compounds.</p><h3>Objectives</h3><p>The objective of this research was to create, optimize, and evaluate the antibiofilm efficacy of a peppermint oil emulsion (o/w) containing levofloxacin against resistant bacteria via biofilm formation.</p><h3>Methods</h3><p>Essential oils, particularly peppermint oil known for its antifungal properties, were employed instead of traditional medium chain triglycerides to formulate lipid nanocarriers, utilizing alternating surfactant types (Solutol HS 15 and Cremophor EL) and differing oil to surfactant ratios (2:1 and 1:1). The LFX-LNCs formula, with a 2:1 oil to surfactant ratio, was selected for further investigation due to its physical properties, including particle size, zeta potential, transmission electron microscopy, and polydispersity index. The antibacterial efficiency of LFX-LNCs was evaluated, revealing their ability to eradicate established biofilms of Gram-negative pathogens, including Escherichia coli (E. coli) and Pseudomonas aeruginosa (P. aeruginosa), as well as Gram-positive strains such as Staphylococcus aureus (S. aureus).</p><h3>Results</h3><p>The mean particle size of LFX-LNCs varied from 30.86 ± 0.54 nm to 68.36 ± 0.56 nm, demonstrating a narrow size distribution, a negative zeta potential (-1.56 ± 0.24 to -20.2 ± 2.15 mV), and a polydispersity index (PDI) ranging from 0.062 ± 0.006 to 0.26 ± 0.002. Lipid nanocapsules generally exhibit a spherical morphology within the nanometric size range when analyzed by transmission electron microscopy (TEM). The antimicrobial activity assessment revealed that EL 2:1 exhibited the most significant antimicrobial efficacy, characterized by a reduced particle size and an inhibition zone measuring up to (2.43 ± 0.24 cm), demonstrating promising results against several pathogenic strains, including <i>P. aeruginosa</i>, <i>S. aureus</i>, and <i>E. coli</i>.</p><h3>Conclusion</h3><p>This study illustrates the efficacy of LFX-LNCs in the treatment of non-healing wounds infected with biofilm-forming bacteria.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":656,"journal":{"name":"Journal of Pharmaceutical Innovation","volume":"20 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12247-024-09891-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmaceutical Innovation","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s12247-024-09891-1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction

The generation of biofilms by bacteria has become a major factor in the rise of antibiotic resistance. Lipid nano-capsules (LNCs) have recently emerged as an innovative platform for drug delivery, due to their unique properties and ability to carry a wide array of therapeutic chemical compounds.

Objectives

The objective of this research was to create, optimize, and evaluate the antibiofilm efficacy of a peppermint oil emulsion (o/w) containing levofloxacin against resistant bacteria via biofilm formation.

Methods

Essential oils, particularly peppermint oil known for its antifungal properties, were employed instead of traditional medium chain triglycerides to formulate lipid nanocarriers, utilizing alternating surfactant types (Solutol HS 15 and Cremophor EL) and differing oil to surfactant ratios (2:1 and 1:1). The LFX-LNCs formula, with a 2:1 oil to surfactant ratio, was selected for further investigation due to its physical properties, including particle size, zeta potential, transmission electron microscopy, and polydispersity index. The antibacterial efficiency of LFX-LNCs was evaluated, revealing their ability to eradicate established biofilms of Gram-negative pathogens, including Escherichia coli (E. coli) and Pseudomonas aeruginosa (P. aeruginosa), as well as Gram-positive strains such as Staphylococcus aureus (S. aureus).

Results

The mean particle size of LFX-LNCs varied from 30.86 ± 0.54 nm to 68.36 ± 0.56 nm, demonstrating a narrow size distribution, a negative zeta potential (-1.56 ± 0.24 to -20.2 ± 2.15 mV), and a polydispersity index (PDI) ranging from 0.062 ± 0.006 to 0.26 ± 0.002. Lipid nanocapsules generally exhibit a spherical morphology within the nanometric size range when analyzed by transmission electron microscopy (TEM). The antimicrobial activity assessment revealed that EL 2:1 exhibited the most significant antimicrobial efficacy, characterized by a reduced particle size and an inhibition zone measuring up to (2.43 ± 0.24 cm), demonstrating promising results against several pathogenic strains, including P. aeruginosa, S. aureus, and E. coli.

Conclusion

This study illustrates the efficacy of LFX-LNCs in the treatment of non-healing wounds infected with biofilm-forming bacteria.

Graphical Abstract

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Pharmaceutical Innovation
Journal of Pharmaceutical Innovation PHARMACOLOGY & PHARMACY-
CiteScore
3.70
自引率
3.80%
发文量
90
审稿时长
>12 weeks
期刊介绍: The Journal of Pharmaceutical Innovation (JPI), is an international, multidisciplinary peer-reviewed scientific journal dedicated to publishing high quality papers emphasizing innovative research and applied technologies within the pharmaceutical and biotechnology industries. JPI''s goal is to be the premier communication vehicle for the critical body of knowledge that is needed for scientific evolution and technical innovation, from R&D to market. Topics will fall under the following categories: Materials science, Product design, Process design, optimization, automation and control, Facilities; Information management, Regulatory policy and strategy, Supply chain developments , Education and professional development, Journal of Pharmaceutical Innovation publishes four issues a year.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信