{"title":"Physics-Guided Hypergraph Contrastive Learning for Dynamic Hyperedge Prediction","authors":"Zhihui Wang;Jianrui Chen;Maoguo Gong;Fei Hao","doi":"10.1109/TNSE.2024.3501378","DOIUrl":null,"url":null,"abstract":"With the increasing magnitude and complexity of data, the importance of higher-order networks is increasingly prominent. Dynamic hyperedge prediction reveals potential higher-order patterns with time evolution in networks, thus providing beneficial insights for decision making. Nevertheless, most existing neural network-based hyperedge prediction models are limited to static hypergraphs. Furthermore, previous efforts on hypergraph contrastive learning involve augmentation strategies, with insufficient consideration of the higher-order and lower-order views carried by the hypergraph itself. To address the above issues, we propose PCL-HP, a physics-guided hypergraph contrastive learning framework for dynamic hyperedge prediction. Specifically, we simply distinguish higher-order and lower-order views of the hypergraph to perform dynamic hypergraph contrastive learning and obtain abstract and concrete feature information, respectively. For lower-order views, we propose a physics-guided desynchronization mechanism to effectively guide the encoder to fuse the physical information during feature propagation, thus alleviating the problem of feature over-smoothing. Additionally, residual loss is introduced into the optimization process to incrementally quantify the loss at different stages to enhance the learning capability of the model. Extensive experiments on 10 dynamic higher-order datasets indicate that PCL-HP outperforms state-of-the-art baselines.","PeriodicalId":54229,"journal":{"name":"IEEE Transactions on Network Science and Engineering","volume":"12 1","pages":"433-450"},"PeriodicalIF":6.7000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Network Science and Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10759854/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
With the increasing magnitude and complexity of data, the importance of higher-order networks is increasingly prominent. Dynamic hyperedge prediction reveals potential higher-order patterns with time evolution in networks, thus providing beneficial insights for decision making. Nevertheless, most existing neural network-based hyperedge prediction models are limited to static hypergraphs. Furthermore, previous efforts on hypergraph contrastive learning involve augmentation strategies, with insufficient consideration of the higher-order and lower-order views carried by the hypergraph itself. To address the above issues, we propose PCL-HP, a physics-guided hypergraph contrastive learning framework for dynamic hyperedge prediction. Specifically, we simply distinguish higher-order and lower-order views of the hypergraph to perform dynamic hypergraph contrastive learning and obtain abstract and concrete feature information, respectively. For lower-order views, we propose a physics-guided desynchronization mechanism to effectively guide the encoder to fuse the physical information during feature propagation, thus alleviating the problem of feature over-smoothing. Additionally, residual loss is introduced into the optimization process to incrementally quantify the loss at different stages to enhance the learning capability of the model. Extensive experiments on 10 dynamic higher-order datasets indicate that PCL-HP outperforms state-of-the-art baselines.
期刊介绍:
The proposed journal, called the IEEE Transactions on Network Science and Engineering (TNSE), is committed to timely publishing of peer-reviewed technical articles that deal with the theory and applications of network science and the interconnections among the elements in a system that form a network. In particular, the IEEE Transactions on Network Science and Engineering publishes articles on understanding, prediction, and control of structures and behaviors of networks at the fundamental level. The types of networks covered include physical or engineered networks, information networks, biological networks, semantic networks, economic networks, social networks, and ecological networks. Aimed at discovering common principles that govern network structures, network functionalities and behaviors of networks, the journal seeks articles on understanding, prediction, and control of structures and behaviors of networks. Another trans-disciplinary focus of the IEEE Transactions on Network Science and Engineering is the interactions between and co-evolution of different genres of networks.