The Precise Synthesis of Ultradense Bottlebrush Polymers Unearths Unique Trends in Lyotropic Ordering

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Timea Kolozsvary, Phillip Kohl, Tianyu Li, David Gillespie, Youli Li, Benjamin R. McDonald
{"title":"The Precise Synthesis of Ultradense Bottlebrush Polymers Unearths Unique Trends in Lyotropic Ordering","authors":"Timea Kolozsvary, Phillip Kohl, Tianyu Li, David Gillespie, Youli Li, Benjamin R. McDonald","doi":"10.1021/jacs.4c13759","DOIUrl":null,"url":null,"abstract":"Biomacromolecular networks with multiscale fibrillar structures are characterized by exceptional mechanical properties, making them attractive architectures for synthetic materials. However, there is a dearth of synthetic polymeric building blocks capable of forming similarly structured networks. Bottlebrush polymers (BBPs) are anisotropic graft polymers with the potential to mimic and replace biomacromolecules such as tropocollagen for the fabrication of synthetic fibrillar networks; however, a longstanding limitation of BBPs has been the lack of rigidity necessary to access the lyotropic ordering that underpins the formation of collagenous networks. While the correlation between BBP rigidity and grafting density is well established, synthetic approaches to rigidify BBPs by increased grafting density are underdeveloped. To address this gap in synthetic capability, we report the synthesis of novel macroinitiators that provide well-defined BBPs with an unprecedentedly high grafting density. A suite of light scattering techniques are used to correlate macromolecular rigidity with grafting architecture and density and demonstrate for the first time that poly(norbornene) BBPs exhibit long-range lyotropic ordering as a result of their rodlike character. Specifically, the newly reported ultradensely grafted structures, preparable on multigram scale, form hexagonal arrays while conventional BBPs do not, despite showing long-range spatial correlations. These results implicate the central role of density and entanglement in the solution phase assembly of BBPs and provide new fundamental insight that is broadly relevant to the fabrication and performance of BBP-derived materials, spanning biomedical research to photonic materials and thermal management technologies. Furthermore, these newly reported liquid crystalline BBPs provide a structural template to explore the untapped potential of the bottom-up assembly of semiflexible networks and are ultimately intended to provide a modular route to hierarchically structured biomimetic materials.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"31 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c13759","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Biomacromolecular networks with multiscale fibrillar structures are characterized by exceptional mechanical properties, making them attractive architectures for synthetic materials. However, there is a dearth of synthetic polymeric building blocks capable of forming similarly structured networks. Bottlebrush polymers (BBPs) are anisotropic graft polymers with the potential to mimic and replace biomacromolecules such as tropocollagen for the fabrication of synthetic fibrillar networks; however, a longstanding limitation of BBPs has been the lack of rigidity necessary to access the lyotropic ordering that underpins the formation of collagenous networks. While the correlation between BBP rigidity and grafting density is well established, synthetic approaches to rigidify BBPs by increased grafting density are underdeveloped. To address this gap in synthetic capability, we report the synthesis of novel macroinitiators that provide well-defined BBPs with an unprecedentedly high grafting density. A suite of light scattering techniques are used to correlate macromolecular rigidity with grafting architecture and density and demonstrate for the first time that poly(norbornene) BBPs exhibit long-range lyotropic ordering as a result of their rodlike character. Specifically, the newly reported ultradensely grafted structures, preparable on multigram scale, form hexagonal arrays while conventional BBPs do not, despite showing long-range spatial correlations. These results implicate the central role of density and entanglement in the solution phase assembly of BBPs and provide new fundamental insight that is broadly relevant to the fabrication and performance of BBP-derived materials, spanning biomedical research to photonic materials and thermal management technologies. Furthermore, these newly reported liquid crystalline BBPs provide a structural template to explore the untapped potential of the bottom-up assembly of semiflexible networks and are ultimately intended to provide a modular route to hierarchically structured biomimetic materials.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信