Merging and Clipping Nets for the Synthesis of Three- and Two-Merged Net Metal–Organic Frameworks

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yunhui Yang, Pilar Fernández-Seriñán, Borja Ortín-Rubio, Partha Samanta, Felipe Gándara, Davide M. Proserpio, Dongsik Nam, Judith Juanhuix, Inhar Imaz, Daniel Maspoch
{"title":"Merging and Clipping Nets for the Synthesis of Three- and Two-Merged Net Metal–Organic Frameworks","authors":"Yunhui Yang, Pilar Fernández-Seriñán, Borja Ortín-Rubio, Partha Samanta, Felipe Gándara, Davide M. Proserpio, Dongsik Nam, Judith Juanhuix, Inhar Imaz, Daniel Maspoch","doi":"10.1021/jacs.4c15936","DOIUrl":null,"url":null,"abstract":"Herein, we report how merging and clipping nets in metal–organic frameworks (MOFs) can be controlled in a single-crystal-to-single-crystal fashion using three different approaches─the merged net, clip-off chemistry, and linker reinstallation─to design and synthesize three- and two-merged net MOFs. Initially, we show the formation of three isoreticular three-merged net MOFs by linking a trimeric Sc<sup>3+</sup> cluster, Sc<sub>3</sub>(μ<sub>3</sub>-Ο)(−COO)<sub>6</sub>, with ditopic zigzag and tritopic linkers. The resulting MOFs exhibit three-merged edge-transitive nets─<b>kgd</b> + <b>hxl</b> + <b>pcu</b>─for the first time. Then, using these three-merged net MOFs as precursors, we selectively remove one of these subnets, the <b>hxl</b> net, via clip-off chemistry to form two-merged net MOFs. This process involves the cleavage of olefinic groups via ozonolysis, providing the resulting two-merged net MOFs with free carboxylic acid groups that can be used to tune their sorption properties such as the removal of cationic organic pollutants. Finally, we use the linker reinstallation approach to convert the two-merged net MOFs back to the three-merged net MOFs. This approach allows for the postsynthetic addition of the previously removed <b>hxl</b> merged net, enabling recovery of the initial three-merged net MOFs or synthesis of new ones using novel ditopic zigzag linkers.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"32 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c15936","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Herein, we report how merging and clipping nets in metal–organic frameworks (MOFs) can be controlled in a single-crystal-to-single-crystal fashion using three different approaches─the merged net, clip-off chemistry, and linker reinstallation─to design and synthesize three- and two-merged net MOFs. Initially, we show the formation of three isoreticular three-merged net MOFs by linking a trimeric Sc3+ cluster, Sc33-Ο)(−COO)6, with ditopic zigzag and tritopic linkers. The resulting MOFs exhibit three-merged edge-transitive nets─kgd + hxl + pcu─for the first time. Then, using these three-merged net MOFs as precursors, we selectively remove one of these subnets, the hxl net, via clip-off chemistry to form two-merged net MOFs. This process involves the cleavage of olefinic groups via ozonolysis, providing the resulting two-merged net MOFs with free carboxylic acid groups that can be used to tune their sorption properties such as the removal of cationic organic pollutants. Finally, we use the linker reinstallation approach to convert the two-merged net MOFs back to the three-merged net MOFs. This approach allows for the postsynthetic addition of the previously removed hxl merged net, enabling recovery of the initial three-merged net MOFs or synthesis of new ones using novel ditopic zigzag linkers.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信