Regulating π-Type Interactions between O 2p and TM t2g Orbitals via Ti Doping and Surface Dielectric Coatings for Li-Rich Cathode

IF 6.1 1区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Yituo Wang, Di Zhang, Da Zhang, Chunge Dang, Jianling Li
{"title":"Regulating π-Type Interactions between O 2p and TM t2g Orbitals via Ti Doping and Surface Dielectric Coatings for Li-Rich Cathode","authors":"Yituo Wang, Di Zhang, Da Zhang, Chunge Dang, Jianling Li","doi":"10.1039/d4qi02773f","DOIUrl":null,"url":null,"abstract":"The irreversible anionic redox reaction and oxygen release of Li-rich layered oxide cathodes seriously hinder their commercial application. Here, a synergistic modification strategy of surface dielectric coating (TiNb2O7) and bulk phase Ti doping is proposed in this paper. TiNb2O7, as a dielectric oxide, can generate a reversed electric field during charging to block the migration path of anions inside the material. In addition, the unique three-dimensional Li+ diffusion channels of TiNb2O7 can improve the lithium-ion diffusion kinetics. The bulk-phase Ti doping can increase the energy barrier of the oxygen release reaction, and the stronger Ti-O bond can regulate the electronic structure and π-hybridization of the transition metal and thus stabilize the oxygen skeleton. The results of XPS, CV, and HRTEM show that the synergistic modification strategy fundamentally inhibits oxygen loss and enhances the reversibility of anion redox, while constructing a uniform and stable CEI interface. The co-modification strategy effectively improves the electrochemical performance of the materials. The modified sample can maintain a high capacity of 175.1 mAh g-1 after 500 cycles at 1C. This work provides new insights to improve the oxygen loss problem of Li-rich layered oxide cathodes.","PeriodicalId":79,"journal":{"name":"Inorganic Chemistry Frontiers","volume":"14 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4qi02773f","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

The irreversible anionic redox reaction and oxygen release of Li-rich layered oxide cathodes seriously hinder their commercial application. Here, a synergistic modification strategy of surface dielectric coating (TiNb2O7) and bulk phase Ti doping is proposed in this paper. TiNb2O7, as a dielectric oxide, can generate a reversed electric field during charging to block the migration path of anions inside the material. In addition, the unique three-dimensional Li+ diffusion channels of TiNb2O7 can improve the lithium-ion diffusion kinetics. The bulk-phase Ti doping can increase the energy barrier of the oxygen release reaction, and the stronger Ti-O bond can regulate the electronic structure and π-hybridization of the transition metal and thus stabilize the oxygen skeleton. The results of XPS, CV, and HRTEM show that the synergistic modification strategy fundamentally inhibits oxygen loss and enhances the reversibility of anion redox, while constructing a uniform and stable CEI interface. The co-modification strategy effectively improves the electrochemical performance of the materials. The modified sample can maintain a high capacity of 175.1 mAh g-1 after 500 cycles at 1C. This work provides new insights to improve the oxygen loss problem of Li-rich layered oxide cathodes.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Inorganic Chemistry Frontiers
Inorganic Chemistry Frontiers CHEMISTRY, INORGANIC & NUCLEAR-
CiteScore
10.40
自引率
7.10%
发文量
587
审稿时长
1.2 months
期刊介绍: The international, high quality journal for interdisciplinary research between inorganic chemistry and related subjects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信