Fluoride Binding in Unlikely Partners: The Formation of Anion-Anion Complexes with [M(EGTA)]⁻ and [M(OBETA)]⁻ (M = Gd3+, Y3+)

IF 6.1 1区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Lorenzo Risolo, Marco Ricci, Daniela Lalli, Carlos Platas-Iglesias, Mauro Botta
{"title":"Fluoride Binding in Unlikely Partners: The Formation of Anion-Anion Complexes with [M(EGTA)]⁻ and [M(OBETA)]⁻ (M = Gd3+, Y3+)","authors":"Lorenzo Risolo, Marco Ricci, Daniela Lalli, Carlos Platas-Iglesias, Mauro Botta","doi":"10.1039/d4qi02908a","DOIUrl":null,"url":null,"abstract":"Anionic metal complexes (M = Gd<small><sup>3+</sup></small>, Y<small><sup>3+</sup></small>) with two homologous acyclic aminopolycarboxylate ligands, heptadentate (OBETA) and octadentate (EGTA), were prepared and characterized using both relaxometric NMR (for Gd<small><sup>3+</sup></small>) and high-resolution NMR (for Y<small><sup>3+</sup></small>). The addition of fluoride to aqueous solutions of these complexes led to the formation of ternary complexes where F⁻ displaces a coordinated water molecule from the metal ion's inner coordination sphere. In the Gd<small><sup>3+</sup></small> complexes, this exchange process was tracked by monitoring changes in the nuclear magnetic relaxation rate of water protons, allowing calculation of the binding affinity. For the diamagnetic Y<small><sup>3+</sup></small> complexes, the exchange was followed through variable-temperature high-resolution <small><sup>19</sup></small>F NMR experiments. Calculated enthalpic and entropic contributions to the activation free energy suggest a dissociative exchange mechanism for the monohydrated [M(EGTA)(H<small><sub>2</sub></small>O)]⁻ and an associative mechanism for the dihydrated [M(OBETA)(H<small><sub>2</sub></small>O)<small><sub>2</sub></small>]⁻. Additionally, an unusual dimeric structure was observed for the dihydrated complexes, where two anionic complexes are bridged by fluoride. Detailed DFT calculations confirmed the presence of the dimer, showing a Y–F bond length of 2.33 Å and a <small><sup>1</sup></small>J<small><sub>Y–F</sub></small> NMR coupling constant of 38.0 Hz, in excellent agreement with the experimental value.","PeriodicalId":79,"journal":{"name":"Inorganic Chemistry Frontiers","volume":"32 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4qi02908a","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Anionic metal complexes (M = Gd3+, Y3+) with two homologous acyclic aminopolycarboxylate ligands, heptadentate (OBETA) and octadentate (EGTA), were prepared and characterized using both relaxometric NMR (for Gd3+) and high-resolution NMR (for Y3+). The addition of fluoride to aqueous solutions of these complexes led to the formation of ternary complexes where F⁻ displaces a coordinated water molecule from the metal ion's inner coordination sphere. In the Gd3+ complexes, this exchange process was tracked by monitoring changes in the nuclear magnetic relaxation rate of water protons, allowing calculation of the binding affinity. For the diamagnetic Y3+ complexes, the exchange was followed through variable-temperature high-resolution 19F NMR experiments. Calculated enthalpic and entropic contributions to the activation free energy suggest a dissociative exchange mechanism for the monohydrated [M(EGTA)(H2O)]⁻ and an associative mechanism for the dihydrated [M(OBETA)(H2O)2]⁻. Additionally, an unusual dimeric structure was observed for the dihydrated complexes, where two anionic complexes are bridged by fluoride. Detailed DFT calculations confirmed the presence of the dimer, showing a Y–F bond length of 2.33 Å and a 1JY–F NMR coupling constant of 38.0 Hz, in excellent agreement with the experimental value.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Inorganic Chemistry Frontiers
Inorganic Chemistry Frontiers CHEMISTRY, INORGANIC & NUCLEAR-
CiteScore
10.40
自引率
7.10%
发文量
587
审稿时长
1.2 months
期刊介绍: The international, high quality journal for interdisciplinary research between inorganic chemistry and related subjects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信