Radiation-induced aerobic oxidation via solvent-derived peroxyl radicals

IF 7.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yang Xu, Bo-Shuai Mu, Zhiyu Tu, Weiqiu Liang, Jiahao Li, Ziyang Sang, Zhibo Liu
{"title":"Radiation-induced aerobic oxidation via solvent-derived peroxyl radicals","authors":"Yang Xu, Bo-Shuai Mu, Zhiyu Tu, Weiqiu Liang, Jiahao Li, Ziyang Sang, Zhibo Liu","doi":"10.1039/d4sc05558f","DOIUrl":null,"url":null,"abstract":"Oxidation is a fundamental transformation in synthesis. Developing facile and effective aerobic oxidation processes under ambient conditions is always in high demand. Benefiting from its high energy and good penetrability, ionizing radiation can readily produce various reactive species to trigger chemical reactions, offering another option for synthesis. Here, we report an ionizing radiation-induced aerobic oxidation strategy to synthesize oxygen-containing compounds. We discovered that molecular oxygen (O<small><sub>2</sub></small>) could be activated by reactive particles generated from solvent radiolysis to produce solvent-derived peroxyl radicals (R<small><sub>sol</sub></small>OO·), which facilitated the selective oxidation of sulfides and phosphorus(<small>III</small>) compounds at room temperature without catalysts. Density functional theory (DFT) calculations further revealed that multiple R<small><sub>sol</sub></small>OO· enable the oxidation reaction through an oxygen atom transfer process. This aerobic oxidation strategy broadens the research scope of radiation-induced chemical transformations while offering an opportunity to convert nuclear energy into chemical energy.","PeriodicalId":9909,"journal":{"name":"Chemical Science","volume":"27 1","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4sc05558f","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Oxidation is a fundamental transformation in synthesis. Developing facile and effective aerobic oxidation processes under ambient conditions is always in high demand. Benefiting from its high energy and good penetrability, ionizing radiation can readily produce various reactive species to trigger chemical reactions, offering another option for synthesis. Here, we report an ionizing radiation-induced aerobic oxidation strategy to synthesize oxygen-containing compounds. We discovered that molecular oxygen (O2) could be activated by reactive particles generated from solvent radiolysis to produce solvent-derived peroxyl radicals (RsolOO·), which facilitated the selective oxidation of sulfides and phosphorus(III) compounds at room temperature without catalysts. Density functional theory (DFT) calculations further revealed that multiple RsolOO· enable the oxidation reaction through an oxygen atom transfer process. This aerobic oxidation strategy broadens the research scope of radiation-induced chemical transformations while offering an opportunity to convert nuclear energy into chemical energy.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Science
Chemical Science CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
14.40
自引率
4.80%
发文量
1352
审稿时长
2.1 months
期刊介绍: Chemical Science is a journal that encompasses various disciplines within the chemical sciences. Its scope includes publishing ground-breaking research with significant implications for its respective field, as well as appealing to a wider audience in related areas. To be considered for publication, articles must showcase innovative and original advances in their field of study and be presented in a manner that is understandable to scientists from diverse backgrounds. However, the journal generally does not publish highly specialized research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信