{"title":"Optimising reaction conditions in flasks for performances in organic light-emitting devices","authors":"Koki Ikemoto, Misato Akiyoshi, Ayano Kobayashi, Hiroshi Kita, Hideo Taka, Hiroyuki Isobe","doi":"10.1039/d4sc07039a","DOIUrl":null,"url":null,"abstract":"A method for correlating reaction conditions with device performance was developed by combining Design-of-Experiments and machine-learning strategies in multistep device fabrication processes. This method allowed the \"from-flask-to-device\" optimisation of a macrocyclisation reaction yielding a mixture of methylated [n]cyclo-meta-phenylenes, and a crude raw material was directly applied to the fabrication of Ir-doped organic light-emitting devices via spin-coating. The method succeeded in eliminating energy-consuming and waste-producing separation and purification steps during device fabrication. The device using the optimal raw mixture material recorded a high external quantum efficiency of 9.6%, which surpassed the performance of purified materials. The raw material method was also found to be applicable to screen-printing processes, and image-transferred OLEDs were fabricated using the low-cost, environmentally benign materials.","PeriodicalId":9909,"journal":{"name":"Chemical Science","volume":"35 1","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4sc07039a","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A method for correlating reaction conditions with device performance was developed by combining Design-of-Experiments and machine-learning strategies in multistep device fabrication processes. This method allowed the "from-flask-to-device" optimisation of a macrocyclisation reaction yielding a mixture of methylated [n]cyclo-meta-phenylenes, and a crude raw material was directly applied to the fabrication of Ir-doped organic light-emitting devices via spin-coating. The method succeeded in eliminating energy-consuming and waste-producing separation and purification steps during device fabrication. The device using the optimal raw mixture material recorded a high external quantum efficiency of 9.6%, which surpassed the performance of purified materials. The raw material method was also found to be applicable to screen-printing processes, and image-transferred OLEDs were fabricated using the low-cost, environmentally benign materials.
期刊介绍:
Chemical Science is a journal that encompasses various disciplines within the chemical sciences. Its scope includes publishing ground-breaking research with significant implications for its respective field, as well as appealing to a wider audience in related areas. To be considered for publication, articles must showcase innovative and original advances in their field of study and be presented in a manner that is understandable to scientists from diverse backgrounds. However, the journal generally does not publish highly specialized research.