Aberrant homeodomain-DNA cooperative dimerization underlies distinct developmental defects in two dominant CRX retinopathy models

IF 6.2 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yiqiao Zheng, Gary D. Stormo, Shiming Chen
{"title":"Aberrant homeodomain-DNA cooperative dimerization underlies distinct developmental defects in two dominant CRX retinopathy models","authors":"Yiqiao Zheng, Gary D. Stormo, Shiming Chen","doi":"10.1101/gr.279340.124","DOIUrl":null,"url":null,"abstract":"Paired-class homeodomain transcription factors (HD TFs) play essential roles in vertebrate development, and their mutations are linked to human diseases. One unique feature of paired-class HD is cooperative dimerization on specific palindrome DNA sequences. Yet, the functional significance of HD cooperative dimerization in animal development and its dysregulation in diseases remain elusive. Using the retinal TF Cone-rod Homeobox (CRX) as a model, we have studied how blindness-causing mutations in the paired HD, p.E80A and p.K88N, alter CRX’s cooperative dimerization, lead to gene misexpression and photoreceptor developmental deficits in dominant manners. CRX<sup>E80A</sup> maintains binding at monomeric WT CRX motifs but is deficient in cooperative binding at dimeric motifs. CRX<sup>E80A</sup>’s cooperativity defect impacts the exponential increase of photoreceptor gene expression in terminal differentiation and produces immature, non-functional photoreceptors in the <em>Crx<sup>E80A</sup></em> retinas. CRX<sup>K88N</sup> is highly cooperative and localizes to ectopic genomic sites with strong enrichment of dimeric HD motifs. CRX<sup>K88N</sup>’s altered biochemical properties disrupt CRX’s ability to direct dynamic chromatin remodeling during development to activate photoreceptor differentiation programs and silence progenitor programs. Our study here provides <em>in vitro</em> and <em>in vivo</em> molecular evidence that paired-class HD cooperative dimerization regulates neuronal development and dysregulation of cooperative binding contributes to severe dominant blinding retinopathies.","PeriodicalId":12678,"journal":{"name":"Genome research","volume":"13 1","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1101/gr.279340.124","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Paired-class homeodomain transcription factors (HD TFs) play essential roles in vertebrate development, and their mutations are linked to human diseases. One unique feature of paired-class HD is cooperative dimerization on specific palindrome DNA sequences. Yet, the functional significance of HD cooperative dimerization in animal development and its dysregulation in diseases remain elusive. Using the retinal TF Cone-rod Homeobox (CRX) as a model, we have studied how blindness-causing mutations in the paired HD, p.E80A and p.K88N, alter CRX’s cooperative dimerization, lead to gene misexpression and photoreceptor developmental deficits in dominant manners. CRXE80A maintains binding at monomeric WT CRX motifs but is deficient in cooperative binding at dimeric motifs. CRXE80A’s cooperativity defect impacts the exponential increase of photoreceptor gene expression in terminal differentiation and produces immature, non-functional photoreceptors in the CrxE80A retinas. CRXK88N is highly cooperative and localizes to ectopic genomic sites with strong enrichment of dimeric HD motifs. CRXK88N’s altered biochemical properties disrupt CRX’s ability to direct dynamic chromatin remodeling during development to activate photoreceptor differentiation programs and silence progenitor programs. Our study here provides in vitro and in vivo molecular evidence that paired-class HD cooperative dimerization regulates neuronal development and dysregulation of cooperative binding contributes to severe dominant blinding retinopathies.
在两种主要的CRX视网膜病变模型中,异常的同源结构域- dna合作二聚化是不同发育缺陷的基础
配对类同源结构域转录因子(HD TFs)在脊椎动物发育中起着重要作用,其突变与人类疾病有关。配对类HD的一个独特特征是在特定的回文DNA序列上进行合作二聚化。然而,HD协同二聚化在动物发育中的功能意义及其在疾病中的失调尚不清楚。以视网膜TF锥杆同源盒(CRX)为模型,我们研究了HD, p.E80A和p.K88N配对的致盲突变如何改变CRX的合作二聚化,导致显性方式的基因错误表达和光感受器发育缺陷。CRXE80A在WT - CRX单体基序上保持结合,但在二聚体基序上缺乏协同结合。CRXE80A的协同性缺陷影响了终端分化过程中光感受器基因表达的指数增长,在CRXE80A视网膜中产生不成熟的、无功能的光感受器。CRXK88N具有高度的协同性,定位于二聚体HD基序富集的异位基因组位点。CRXK88N改变的生化特性破坏了CRX在发育过程中指导动态染色质重塑的能力,从而激活光受体分化程序并沉默祖细胞程序。我们的研究提供了体外和体内的分子证据,证明配对类HD合作二聚化调节神经元发育,而合作结合的失调会导致严重的显性致盲性视网膜病变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Genome research
Genome research 生物-生化与分子生物学
CiteScore
12.40
自引率
1.40%
发文量
140
审稿时长
6 months
期刊介绍: Launched in 1995, Genome Research is an international, continuously published, peer-reviewed journal that focuses on research that provides novel insights into the genome biology of all organisms, including advances in genomic medicine. Among the topics considered by the journal are genome structure and function, comparative genomics, molecular evolution, genome-scale quantitative and population genetics, proteomics, epigenomics, and systems biology. The journal also features exciting gene discoveries and reports of cutting-edge computational biology and high-throughput methodologies. New data in these areas are published as research papers, or methods and resource reports that provide novel information on technologies or tools that will be of interest to a broad readership. Complete data sets are presented electronically on the journal''s web site where appropriate. The journal also provides Reviews, Perspectives, and Insight/Outlook articles, which present commentary on the latest advances published both here and elsewhere, placing such progress in its broader biological context.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信