Enhancing Ethereum Fraud Detection via Generative and Contrastive Self-Supervision

IF 6.3 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS
Chengxiang Jin;Jiajun Zhou;Chenxuan Xie;Shanqing Yu;Qi Xuan;Xiaoniu Yang
{"title":"Enhancing Ethereum Fraud Detection via Generative and Contrastive Self-Supervision","authors":"Chengxiang Jin;Jiajun Zhou;Chenxuan Xie;Shanqing Yu;Qi Xuan;Xiaoniu Yang","doi":"10.1109/TIFS.2024.3521611","DOIUrl":null,"url":null,"abstract":"The rampant fraudulent activities on Ethereum hinder the healthy development of the blockchain ecosystem, necessitating the reinforcement of regulations. However, multiple imbalances involving account interaction frequencies and interaction types in the Ethereum transaction environment pose significant challenges to data mining-based fraud detection research. To address this, we first propose the concept of meta-interactions to refine interaction behaviors in Ethereum, and based on this, we present a dual self-supervision enhanced Ethereum fraud detection framework, named Meta-IFD. This framework initially introduces a generative self-supervision mechanism to augment the interaction features of accounts, followed by a contrastive self-supervision mechanism to differentiate various behavior patterns, and ultimately characterizes the behavioral representations of accounts and mines potential fraud risks through multi-view interaction feature learning. Extensive experiments on real Ethereum datasets demonstrate the effectiveness and superiority of our framework in detecting common Ethereum fraud behaviors such as Ponzi schemes and phishing scams. Additionally, the generative module can effectively alleviate the interaction distribution imbalance in Ethereum data, while the contrastive module significantly enhances the framework’s ability to distinguish different behavior patterns. The source code will be available in \n<uri>https://github.com/GISec-Team/Meta-IFD</uri>\n.","PeriodicalId":13492,"journal":{"name":"IEEE Transactions on Information Forensics and Security","volume":"20 ","pages":"839-853"},"PeriodicalIF":6.3000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Forensics and Security","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10812703/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The rampant fraudulent activities on Ethereum hinder the healthy development of the blockchain ecosystem, necessitating the reinforcement of regulations. However, multiple imbalances involving account interaction frequencies and interaction types in the Ethereum transaction environment pose significant challenges to data mining-based fraud detection research. To address this, we first propose the concept of meta-interactions to refine interaction behaviors in Ethereum, and based on this, we present a dual self-supervision enhanced Ethereum fraud detection framework, named Meta-IFD. This framework initially introduces a generative self-supervision mechanism to augment the interaction features of accounts, followed by a contrastive self-supervision mechanism to differentiate various behavior patterns, and ultimately characterizes the behavioral representations of accounts and mines potential fraud risks through multi-view interaction feature learning. Extensive experiments on real Ethereum datasets demonstrate the effectiveness and superiority of our framework in detecting common Ethereum fraud behaviors such as Ponzi schemes and phishing scams. Additionally, the generative module can effectively alleviate the interaction distribution imbalance in Ethereum data, while the contrastive module significantly enhances the framework’s ability to distinguish different behavior patterns. The source code will be available in https://github.com/GISec-Team/Meta-IFD .
通过生成和对比自我监督增强以太坊欺诈检测
以太坊上猖獗的欺诈活动阻碍了区块链生态系统的健康发展,需要加强监管。然而,以太坊交易环境中涉及账户交互频率和交互类型的多重失衡给基于数据挖掘的欺诈检测研究带来了重大挑战。为了解决这个问题,我们首先提出了元交互的概念来完善以太坊中的交互行为,并在此基础上提出了一个双重自我监督增强的以太坊欺诈检测框架,命名为Meta-IFD。该框架首先引入生成式自我监督机制来增强账户的交互特征,然后引入对比式自我监督机制来区分各种行为模式,最终通过多视角交互特征学习来表征账户的行为表征,挖掘潜在的欺诈风险。在真实的以太坊数据集上进行的大量实验证明了我们的框架在检测常见的以太坊欺诈行为(如庞氏骗局和网络钓鱼骗局)方面的有效性和优越性。另外,生成模块可以有效缓解以太坊数据中交互分布的不平衡,对比模块则显著增强了框架区分不同行为模式的能力。源代码可从https://github.com/GISec-Team/Meta-IFD获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Information Forensics and Security
IEEE Transactions on Information Forensics and Security 工程技术-工程:电子与电气
CiteScore
14.40
自引率
7.40%
发文量
234
审稿时长
6.5 months
期刊介绍: The IEEE Transactions on Information Forensics and Security covers the sciences, technologies, and applications relating to information forensics, information security, biometrics, surveillance and systems applications that incorporate these features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信