Flexible Impedance Calculation of Inverter-Based Resources via Descriptor State Space Models

IF 3.8 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Andrés Argüello;Ricardo Torquato;Tiago Barbosa;Walmir Freitas;Maurício B. C. Salles
{"title":"Flexible Impedance Calculation of Inverter-Based Resources via Descriptor State Space Models","authors":"Andrés Argüello;Ricardo Torquato;Tiago Barbosa;Walmir Freitas;Maurício B. C. Salles","doi":"10.1109/TPWRD.2024.3521291","DOIUrl":null,"url":null,"abstract":"Impedance-based models of inverter-based resources (IBR) such as wind/photovoltaic generators are widely used to study control to grid interactions. Existing methods for obtaining detailed analytic expressions of the impedance equivalents are time consuming and reliant on extensive algebraic manipulation of numerous equations. In this context, this paper presents a method for calculating impedance profiles numerically, by using a descriptor state-space (DSS) representation of the IBRs which considers all IBR control blocks modularly, so that they can be added, removed, or modified without extensive algebraic manipulations. The method is based on DSS models, which are more transparent than traditional state-space models as algebraic expressions are modeled explicitly. This modular approach speeds up the investigation of the impact of different control designs and tunings on the risk of instabilities, while preserving a high level of detail of IBR behavior and mitigating potential human error. The proposed calculation methodology is validated with detailed electromagnetic transient simulations, for single-phase and three-phase IBRs. Applications of the proposed approach are presented to illustrate its ability to assist on the efficient investigation of characteristics of different control designs, and to help identify simplified models tailored for studying specific types of instabilities at different frequency ranges.","PeriodicalId":13498,"journal":{"name":"IEEE Transactions on Power Delivery","volume":"40 2","pages":"764-775"},"PeriodicalIF":3.8000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Power Delivery","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10812054/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Impedance-based models of inverter-based resources (IBR) such as wind/photovoltaic generators are widely used to study control to grid interactions. Existing methods for obtaining detailed analytic expressions of the impedance equivalents are time consuming and reliant on extensive algebraic manipulation of numerous equations. In this context, this paper presents a method for calculating impedance profiles numerically, by using a descriptor state-space (DSS) representation of the IBRs which considers all IBR control blocks modularly, so that they can be added, removed, or modified without extensive algebraic manipulations. The method is based on DSS models, which are more transparent than traditional state-space models as algebraic expressions are modeled explicitly. This modular approach speeds up the investigation of the impact of different control designs and tunings on the risk of instabilities, while preserving a high level of detail of IBR behavior and mitigating potential human error. The proposed calculation methodology is validated with detailed electromagnetic transient simulations, for single-phase and three-phase IBRs. Applications of the proposed approach are presented to illustrate its ability to assist on the efficient investigation of characteristics of different control designs, and to help identify simplified models tailored for studying specific types of instabilities at different frequency ranges.
基于广义状态空间模型的逆变器资源柔性阻抗计算
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Power Delivery
IEEE Transactions on Power Delivery 工程技术-工程:电子与电气
CiteScore
9.00
自引率
13.60%
发文量
513
审稿时长
6 months
期刊介绍: The scope of the Society embraces planning, research, development, design, application, construction, installation and operation of apparatus, equipment, structures, materials and systems for the safe, reliable and economic generation, transmission, distribution, conversion, measurement and control of electric energy. It includes the developing of engineering standards, the providing of information and instruction to the public and to legislators, as well as technical scientific, literary, educational and other activities that contribute to the electric power discipline or utilize the techniques or products within this discipline.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信