Prediction of Heterogeneous Device Task Runtime Based on Edge Server-Oriented Deep Neuro-Fuzzy System

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Haijie Wu;Weiwei Lin;Wangbo Shen;Xiumin Wang;C. L. Philip Chen;Keqin Li
{"title":"Prediction of Heterogeneous Device Task Runtime Based on Edge Server-Oriented Deep Neuro-Fuzzy System","authors":"Haijie Wu;Weiwei Lin;Wangbo Shen;Xiumin Wang;C. L. Philip Chen;Keqin Li","doi":"10.1109/TSC.2024.3520869","DOIUrl":null,"url":null,"abstract":"Predicting the runtime of tasks is of great significance as it can help users better understand the future runtime consumption of the tasks and make decisions for their heterogeneous devices, or be applied to task scheduling. Learning features from user task history data for predicting task runtime is a mainstream method. However, this method faces many challenges when applied to edge intelligence. In the Big Data era, user devices and data features are constantly evolving, necessitating frequent model retrains. Meanwhile, the noisy data from these devices requires robust methods for valuable insight extraction. In this paper, we propose an edge server-oriented deep neuro-fuzzy system (ESODNFS) that can be trained and inferred on edge servers, for providing users with task runtime prediction services. We divided the dataset and trained it on multiple improved adaptive-network-based fuzzy inference system units (ANFISU), and finally conducted joint training on a deep neural network (DNN). By partitioning the dataset, we reduced the number of parameters for each ANFISU, and at the same time, multiple units can be trained in parallel, supporting fast training and iteration. Additionally, the application of fuzzy inference can effectively learn the features in noisy data and make accurate predictions. The experimental results show that ESODNFS can accurately predict the runtime of real tasks. Compared with other DNN and DNFS, it can achieve good prediction results while reducing training time by over 35%.","PeriodicalId":13255,"journal":{"name":"IEEE Transactions on Services Computing","volume":"18 1","pages":"372-384"},"PeriodicalIF":5.5000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Services Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10812057/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Predicting the runtime of tasks is of great significance as it can help users better understand the future runtime consumption of the tasks and make decisions for their heterogeneous devices, or be applied to task scheduling. Learning features from user task history data for predicting task runtime is a mainstream method. However, this method faces many challenges when applied to edge intelligence. In the Big Data era, user devices and data features are constantly evolving, necessitating frequent model retrains. Meanwhile, the noisy data from these devices requires robust methods for valuable insight extraction. In this paper, we propose an edge server-oriented deep neuro-fuzzy system (ESODNFS) that can be trained and inferred on edge servers, for providing users with task runtime prediction services. We divided the dataset and trained it on multiple improved adaptive-network-based fuzzy inference system units (ANFISU), and finally conducted joint training on a deep neural network (DNN). By partitioning the dataset, we reduced the number of parameters for each ANFISU, and at the same time, multiple units can be trained in parallel, supporting fast training and iteration. Additionally, the application of fuzzy inference can effectively learn the features in noisy data and make accurate predictions. The experimental results show that ESODNFS can accurately predict the runtime of real tasks. Compared with other DNN and DNFS, it can achieve good prediction results while reducing training time by over 35%.
基于边缘服务器的深度神经模糊系统异构设备任务运行时预测
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Services Computing
IEEE Transactions on Services Computing COMPUTER SCIENCE, INFORMATION SYSTEMS-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
11.50
自引率
6.20%
发文量
278
审稿时长
>12 weeks
期刊介绍: IEEE Transactions on Services Computing encompasses the computing and software aspects of the science and technology of services innovation research and development. It places emphasis on algorithmic, mathematical, statistical, and computational methods central to services computing. Topics covered include Service Oriented Architecture, Web Services, Business Process Integration, Solution Performance Management, and Services Operations and Management. The transactions address mathematical foundations, security, privacy, agreement, contract, discovery, negotiation, collaboration, and quality of service for web services. It also covers areas like composite web service creation, business and scientific applications, standards, utility models, business process modeling, integration, collaboration, and more in the realm of Services Computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信