Descriptor: Benchmarking Secure Neural Network Evaluation Methods for Protein Sequence Classification (iDASH24).

IEEE data descriptions Pub Date : 2024-01-01 Epub Date: 2024-10-17 DOI:10.1109/ieeedata.2024.3482283
Arif Harmanci, Luyao Chen, Miran Kim, Xiaoqian Jiang
{"title":"Descriptor: <i>Benchmarking Secure Neural Network Evaluation Methods for Protein Sequence Classification (iDASH24)</i>.","authors":"Arif Harmanci, Luyao Chen, Miran Kim, Xiaoqian Jiang","doi":"10.1109/ieeedata.2024.3482283","DOIUrl":null,"url":null,"abstract":"<p><p>To uniformly test and benchmark the secure evaluation of transformer-based models, we designed the iDASH24 homomorphic encryption track dataset. The dataset comprises a protein family classification model with a transformer architecture and an example dataset that is used to build and test the secure evaluation strategies. This dataset was used in the challenge period of iDASH24 Genomic Privacy Competition, where the teams designed secure evaluation of the classification model using a homomorphic encryption scheme. Combined with the benchmarking results and companion methods, iDASH24 dataset is a unique resource that can be used to benchmark secure evaluation of neural network models.</p>","PeriodicalId":520344,"journal":{"name":"IEEE data descriptions","volume":"1 ","pages":"109-112"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11660429/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE data descriptions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ieeedata.2024.3482283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/17 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To uniformly test and benchmark the secure evaluation of transformer-based models, we designed the iDASH24 homomorphic encryption track dataset. The dataset comprises a protein family classification model with a transformer architecture and an example dataset that is used to build and test the secure evaluation strategies. This dataset was used in the challenge period of iDASH24 Genomic Privacy Competition, where the teams designed secure evaluation of the classification model using a homomorphic encryption scheme. Combined with the benchmarking results and companion methods, iDASH24 dataset is a unique resource that can be used to benchmark secure evaluation of neural network models.

描述:蛋白质序列分类的基准安全神经网络评估方法(iDASH24)。
为了统一测试和基准测试基于变压器的模型的安全性评估,我们设计了iDASH24同态加密轨迹数据集。该数据集包括一个具有变压器架构的蛋白质家族分类模型和一个用于构建和测试安全评估策略的示例数据集。该数据集用于iDASH24基因组隐私竞赛的挑战期,团队使用同态加密方案设计了分类模型的安全评估。结合基准测试结果和配套方法,iDASH24数据集是一个独特的资源,可用于对神经网络模型进行基准安全评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信