{"title":"A click chemistry-based biorthogonal approach for the detection and identification of protein lysine malonylation for osteoarthritis research.","authors":"Anupama Binoy, Pandurangan Nanjan, Kavya Chellamuthu, Huanhuan Liu, Shouan Zhu","doi":"10.1101/2024.12.12.628274","DOIUrl":null,"url":null,"abstract":"<p><p>Lysine malonylation is a post-translational modification where a malonyl group, characterized by a negatively charged carboxylate, is covalently attached to the Ɛ-amino side chain of lysine, influencing protein structure and function. Our laboratory identified Mak upregulation in cartilage under aging and obesity, contributing to osteoarthritis (OA). Current antibody-based detection methods face limitations in identifying Mak targets. Here, we introduce an alkyne-functionalized probe, MA-diyne, which metabolically incorporates into proteins, enabling copper(I) ion-catalyzed click reactions to conjugate labeled proteins with azide-based fluorescent dyes or affinity purification tags. In-gel fluorescence confirms MA-diyne incorporation into proteins across various cell types and species, including mouse chondrocytes, adipocytes, Hek293T cells, and <i>C. elegans</i>. Pull-down experiments identified known Mak proteins such as GAPDH and Aldolase. The extent of MA-diyne modification was higher in Sirtuin 5-deficient cells suggesting these modified proteins are Sirtuin 5 substrates. Pulse-chase experiments confirmed the dynamic nature of protein malonylation. Quantitative proteomics identified 1136 proteins corresponding to 8903 peptides with 429 proteins showing 1-fold increase in labeled group. Sirtuin 5 regulated 374 of these proteins. Pull down of newly identified proteins such as β-actin and Stat3 was also done. This study highlights MA-diyne as a powerful chemical tool to investigate the molecular targets and functions of lysine malonylation in OA conditions.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11661220/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.12.12.628274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Lysine malonylation is a post-translational modification where a malonyl group, characterized by a negatively charged carboxylate, is covalently attached to the Ɛ-amino side chain of lysine, influencing protein structure and function. Our laboratory identified Mak upregulation in cartilage under aging and obesity, contributing to osteoarthritis (OA). Current antibody-based detection methods face limitations in identifying Mak targets. Here, we introduce an alkyne-functionalized probe, MA-diyne, which metabolically incorporates into proteins, enabling copper(I) ion-catalyzed click reactions to conjugate labeled proteins with azide-based fluorescent dyes or affinity purification tags. In-gel fluorescence confirms MA-diyne incorporation into proteins across various cell types and species, including mouse chondrocytes, adipocytes, Hek293T cells, and C. elegans. Pull-down experiments identified known Mak proteins such as GAPDH and Aldolase. The extent of MA-diyne modification was higher in Sirtuin 5-deficient cells suggesting these modified proteins are Sirtuin 5 substrates. Pulse-chase experiments confirmed the dynamic nature of protein malonylation. Quantitative proteomics identified 1136 proteins corresponding to 8903 peptides with 429 proteins showing 1-fold increase in labeled group. Sirtuin 5 regulated 374 of these proteins. Pull down of newly identified proteins such as β-actin and Stat3 was also done. This study highlights MA-diyne as a powerful chemical tool to investigate the molecular targets and functions of lysine malonylation in OA conditions.