Shellaina J V Gordon, Florian Perner, Laura MacPherson, Daniela V Wenge, Wallace Bourgeois, Katie Fennell, Tabea Klaus, Jelena Petrovic, Jakub Horvath, Joan Cao, John Lapek, Sean Uryu, Jeffrey White, Enid Y N Lam, Xinmeng Jasmine Mu, Yih-Chih Chan, Andrea Gillespie, Benjamin Blyth, Michelle A Camerino, Ylyva E Bozikis, Henrietta Holze, Kathy Knezevic, Jesse Balic, Paul A Stupple, Ian P Street, Brendon J Monahan, Shikhar Sharma, Elanor N Wainwright, Dane Vassiliadis, Thomas A Paul, Scott A Armstrong, Mark A Dawson
{"title":"Catalytic inhibition of KAT6/KAT7 enhances the efficacy and overcomes primary and acquired resistance to Menin inhibitors in MLL leukaemia.","authors":"Shellaina J V Gordon, Florian Perner, Laura MacPherson, Daniela V Wenge, Wallace Bourgeois, Katie Fennell, Tabea Klaus, Jelena Petrovic, Jakub Horvath, Joan Cao, John Lapek, Sean Uryu, Jeffrey White, Enid Y N Lam, Xinmeng Jasmine Mu, Yih-Chih Chan, Andrea Gillespie, Benjamin Blyth, Michelle A Camerino, Ylyva E Bozikis, Henrietta Holze, Kathy Knezevic, Jesse Balic, Paul A Stupple, Ian P Street, Brendon J Monahan, Shikhar Sharma, Elanor N Wainwright, Dane Vassiliadis, Thomas A Paul, Scott A Armstrong, Mark A Dawson","doi":"10.1101/2024.12.11.627663","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the molecular pathogenesis of MLL fusion oncoprotein (MLL-FP) leukaemia has spawned epigenetic therapies that have improved clinical outcomes in this often-incurable disease. Using genetic and pharmacological approaches, we define the individual and combined contribution of KAT6A, KAT6B and KAT7, in MLL-FP leukaemia. Whilst inhibition of KAT6A/B is efficacious in some pre-clinical models, simultaneous targeting of KAT7, with the novel inhibitor PF-9363, increases the therapeutic efficacy. KAT7 interacts with Menin and the MLL complex and is co-localised at chromatin to co-regulate the MLL-FP transcriptional program. Inhibition of KAT6/KAT7 provides an orthogonal route to targeting Menin to disable the transcriptional activity of MLL-FP. Consequently, combined inhibition rapidly evicts the MLL-FP from chromatin, potently represses oncogenic transcription and overcomes primary resistance to Menin inhibitors. Moreover, PF-9363 or genetic depletion of KAT7 can also overcome acquired genetic/non-genetic resistance to Menin inhibition. These data provide the molecular rationale for rapid clinical translation of combination therapy in MLL-FP leukaemia.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11661155/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.12.11.627663","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding the molecular pathogenesis of MLL fusion oncoprotein (MLL-FP) leukaemia has spawned epigenetic therapies that have improved clinical outcomes in this often-incurable disease. Using genetic and pharmacological approaches, we define the individual and combined contribution of KAT6A, KAT6B and KAT7, in MLL-FP leukaemia. Whilst inhibition of KAT6A/B is efficacious in some pre-clinical models, simultaneous targeting of KAT7, with the novel inhibitor PF-9363, increases the therapeutic efficacy. KAT7 interacts with Menin and the MLL complex and is co-localised at chromatin to co-regulate the MLL-FP transcriptional program. Inhibition of KAT6/KAT7 provides an orthogonal route to targeting Menin to disable the transcriptional activity of MLL-FP. Consequently, combined inhibition rapidly evicts the MLL-FP from chromatin, potently represses oncogenic transcription and overcomes primary resistance to Menin inhibitors. Moreover, PF-9363 or genetic depletion of KAT7 can also overcome acquired genetic/non-genetic resistance to Menin inhibition. These data provide the molecular rationale for rapid clinical translation of combination therapy in MLL-FP leukaemia.