Alexis T Wells, Michelle M Shen, Redwan H Binrouf, Anna E D'Amico, Ramon Bossardi Ramos, Michelle R Lennartz
{"title":"Identification of Myeloid Protein Kinase C - Epsilon as a Novel Atheroprotective Gene.","authors":"Alexis T Wells, Michelle M Shen, Redwan H Binrouf, Anna E D'Amico, Ramon Bossardi Ramos, Michelle R Lennartz","doi":"10.1101/2024.12.09.627650","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Atherosclerosis is a lipid mediated chronic inflammatory disease driven my macrophages (MØ). Protein Kinase C - epsilon (PKCɛ) is is a serine/threonine kinase involved in diverse cellular processes such as migration, growth, differentiation, and survival. PKCɛ is known to act in a context dependent manner within heart, however, its role in atherosclerosis is unknown.</p><p><strong>Methods: </strong>Bone marrow derived MØ from global PKCɛ KO mice were examined for impact of lipid metabolism and inflammatory factor secretion. Public geneset analysis assessed raw counts of PKCɛ to determine translational relevance. To determine the function myeloid PKCɛ on atherosclerosis a novel murine model was generated using LysM Cre technology. After its characterization, human-like hypercholesterolemia was induced to assess plaque morphology in WT mice or mice lacking myeloid PKCɛ.</p><p><strong>Results: </strong>Public geneset analysis of human atherosclerotic plaque tissue revealed that PKCɛ expression is inversely correlated with plaque size and vulnerability. Similarly, peritoneal MØ from hypercholesterolemic mice have significantly lower PKCɛ expression. As MØ play a major role in atherogenesis, we generated a mouse strain with PKCɛ selectively deleted in the myeloid lineage (mɛKO). qPCR revealed no basal differences between genotypes in the expression of lipid uptake receptors, efflux transporters, or inflammatory markers. However, upon lipid loading, mɛKO MØs retained significantly more cholesterol than WT. Human-like hypercholesterolemia was induced in WT and mɛKO mice and assessed for lesion area and plaque morphology in aortic arches and aortic roots. We found that, compared to WT, the lesion area in mɛKO mice was significantly larger, more necrotic, had larger foam cells, and thinner collagen caps.</p><p><strong>Conclusions: </strong>Loss of myeloid PKCɛ promotes atherosclerosis as determined by larger lesions, more necrosis, thinner plaque caps). Together, these data identify myeloid PKCɛ as a novel atheroprotective gene, laying the foundation for mechanistic studies on the signaling networks responsible for the phenotype.</p><p><strong>Highlights: </strong>A novel murine model in which PKCɛ is floxed (PKCɛ <sup>fl/fl</sup> ) on both alleles haas been generated, backcrossed, and deposited into Jackson Laboratories. PKCε <sup>fl/fl</sup> mice have been crossed with those on the LysM Cre background thereby deleting PKCε from myeloid cells (mεKO). Deletion of PKCε has no basal affects on other PKC isoforms, lipid handling markers, or inflammatory markers.Upon stimulation with lopid loading in vitro or hypercholesterolemia in vivo, mεKO BMDMs retain more cholesterol and mεKO mice develop a more vulnerable plaque phenotype (i.e. larger lesions, more necrosis, thimmer plaque caps).These findings provide a rationale for the need to identify mediators in the PKCε signaling pathway responsible for protection against vulnerable plaques in atherosclerosis; potentially aiding in the development of preventative and therapeutic treatments.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11661236/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.12.09.627650","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Atherosclerosis is a lipid mediated chronic inflammatory disease driven my macrophages (MØ). Protein Kinase C - epsilon (PKCɛ) is is a serine/threonine kinase involved in diverse cellular processes such as migration, growth, differentiation, and survival. PKCɛ is known to act in a context dependent manner within heart, however, its role in atherosclerosis is unknown.
Methods: Bone marrow derived MØ from global PKCɛ KO mice were examined for impact of lipid metabolism and inflammatory factor secretion. Public geneset analysis assessed raw counts of PKCɛ to determine translational relevance. To determine the function myeloid PKCɛ on atherosclerosis a novel murine model was generated using LysM Cre technology. After its characterization, human-like hypercholesterolemia was induced to assess plaque morphology in WT mice or mice lacking myeloid PKCɛ.
Results: Public geneset analysis of human atherosclerotic plaque tissue revealed that PKCɛ expression is inversely correlated with plaque size and vulnerability. Similarly, peritoneal MØ from hypercholesterolemic mice have significantly lower PKCɛ expression. As MØ play a major role in atherogenesis, we generated a mouse strain with PKCɛ selectively deleted in the myeloid lineage (mɛKO). qPCR revealed no basal differences between genotypes in the expression of lipid uptake receptors, efflux transporters, or inflammatory markers. However, upon lipid loading, mɛKO MØs retained significantly more cholesterol than WT. Human-like hypercholesterolemia was induced in WT and mɛKO mice and assessed for lesion area and plaque morphology in aortic arches and aortic roots. We found that, compared to WT, the lesion area in mɛKO mice was significantly larger, more necrotic, had larger foam cells, and thinner collagen caps.
Conclusions: Loss of myeloid PKCɛ promotes atherosclerosis as determined by larger lesions, more necrosis, thinner plaque caps). Together, these data identify myeloid PKCɛ as a novel atheroprotective gene, laying the foundation for mechanistic studies on the signaling networks responsible for the phenotype.
Highlights: A novel murine model in which PKCɛ is floxed (PKCɛ fl/fl ) on both alleles haas been generated, backcrossed, and deposited into Jackson Laboratories. PKCε fl/fl mice have been crossed with those on the LysM Cre background thereby deleting PKCε from myeloid cells (mεKO). Deletion of PKCε has no basal affects on other PKC isoforms, lipid handling markers, or inflammatory markers.Upon stimulation with lopid loading in vitro or hypercholesterolemia in vivo, mεKO BMDMs retain more cholesterol and mεKO mice develop a more vulnerable plaque phenotype (i.e. larger lesions, more necrosis, thimmer plaque caps).These findings provide a rationale for the need to identify mediators in the PKCε signaling pathway responsible for protection against vulnerable plaques in atherosclerosis; potentially aiding in the development of preventative and therapeutic treatments.