Fluorescent biosensor for ultra-stability detection of Pax-5a based on a double cascade amplification strategy.

Chang Liu, Xinyi Zhang, Jun Xu, Min Gao, Suqin Wang, Hongbo Li
{"title":"Fluorescent biosensor for ultra-stability detection of Pax-5a based on a double cascade amplification strategy.","authors":"Chang Liu, Xinyi Zhang, Jun Xu, Min Gao, Suqin Wang, Hongbo Li","doi":"10.1016/j.saa.2024.125632","DOIUrl":null,"url":null,"abstract":"<p><p>The development of B-lymphoblastic leukemia is tightly associated with aberrant expression of Pax-5a. This work presented a novel dual signal amplification strategy-based Pax-5a detection method by combining the rolling circle amplification reaction (RCA) and the Entropy-driven toehold-mediated strand displacement (ETSD). Particularly noteworthy is the employed ETSD, which effectively improves the rate and stability of the reaction due to its unique entropy-driven principle. The uniqueness of this method is the combination of two amplification techniques, each utilizing its own strengths to achieve our intended purpose. This sensing method has been effectively used to determine the Pax-5a gene which with a reliable linear correlation for detection within a range and achieving a detection limit of 3.34 pM, calculated using the formula (3σ/S). Furthermore, even in 1 % of human serum samples, the biosensor can identify the target gene with exceptional sensitivity. The recovery rates fall within the range of 96.68-101.76 %, with a relative standard deviation (RSD) of 5.47 %. The method has a strong specificity based on sequence-specific hybridization of nucleic acids, thereby effectively preventing potential false-positive results. This fluorescent biosensor has a high detection capability for Pax-5a, and offers stable results. It provides a new way for early clinical diagnosis of acute lymphoblastic leukemia.</p>","PeriodicalId":94213,"journal":{"name":"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy","volume":"329 ","pages":"125632"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.saa.2024.125632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The development of B-lymphoblastic leukemia is tightly associated with aberrant expression of Pax-5a. This work presented a novel dual signal amplification strategy-based Pax-5a detection method by combining the rolling circle amplification reaction (RCA) and the Entropy-driven toehold-mediated strand displacement (ETSD). Particularly noteworthy is the employed ETSD, which effectively improves the rate and stability of the reaction due to its unique entropy-driven principle. The uniqueness of this method is the combination of two amplification techniques, each utilizing its own strengths to achieve our intended purpose. This sensing method has been effectively used to determine the Pax-5a gene which with a reliable linear correlation for detection within a range and achieving a detection limit of 3.34 pM, calculated using the formula (3σ/S). Furthermore, even in 1 % of human serum samples, the biosensor can identify the target gene with exceptional sensitivity. The recovery rates fall within the range of 96.68-101.76 %, with a relative standard deviation (RSD) of 5.47 %. The method has a strong specificity based on sequence-specific hybridization of nucleic acids, thereby effectively preventing potential false-positive results. This fluorescent biosensor has a high detection capability for Pax-5a, and offers stable results. It provides a new way for early clinical diagnosis of acute lymphoblastic leukemia.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信