{"title":"Angiotensin peptides enhance SARS-CoV-2 spike protein binding to its host cell receptors.","authors":"Katelin X Oliveira, Yuichiro J Suzuki","doi":"10.1101/2024.12.12.628247","DOIUrl":null,"url":null,"abstract":"<p><p>Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the virus that caused the Coronavirus Disease 2019 (COVID-19) pandemic, has a spike glycoprotein that is involved in recognizing and fusing to host cell receptors, such as angiotensin-converting enzyme 2 (ACE2), neuropilin-1 (NRP1), and AXL tyrosine-protein kinase. Since the major spike protein receptor is ACE2, an enzyme that regulates angiotensin II (1-8), this study tested the hypothesis that angiotensin II (1-8) influences the binding of the spike protein to its receptors. While angiotensin II (1-8) did not influence spike-ACE2 binding, we found that it significantly enhances spike-AXL binding. Our experiments showed that longer lengths of angiotensin, such as angiotensin I (1-10), did not significantly affect spike-AXL binding. In contrast, shorter lengths of angiotensin peptides, in particular, angiotensin IV (3-8), strongly increased spike-AXL binding. Angiotensin IV (3-8) also enhanced spike protein binding to ACE2 and NRP1. The discovery of the enhancing effects of angiotensin peptides on spike-host cell receptor binding may suggest that these peptides could be pharmacological targets to treat COVID-19 and post-acute sequelae of SARS-CoV-2 (PASC), which is also known as long COVID.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11661167/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.12.12.628247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the virus that caused the Coronavirus Disease 2019 (COVID-19) pandemic, has a spike glycoprotein that is involved in recognizing and fusing to host cell receptors, such as angiotensin-converting enzyme 2 (ACE2), neuropilin-1 (NRP1), and AXL tyrosine-protein kinase. Since the major spike protein receptor is ACE2, an enzyme that regulates angiotensin II (1-8), this study tested the hypothesis that angiotensin II (1-8) influences the binding of the spike protein to its receptors. While angiotensin II (1-8) did not influence spike-ACE2 binding, we found that it significantly enhances spike-AXL binding. Our experiments showed that longer lengths of angiotensin, such as angiotensin I (1-10), did not significantly affect spike-AXL binding. In contrast, shorter lengths of angiotensin peptides, in particular, angiotensin IV (3-8), strongly increased spike-AXL binding. Angiotensin IV (3-8) also enhanced spike protein binding to ACE2 and NRP1. The discovery of the enhancing effects of angiotensin peptides on spike-host cell receptor binding may suggest that these peptides could be pharmacological targets to treat COVID-19 and post-acute sequelae of SARS-CoV-2 (PASC), which is also known as long COVID.