Molecular Crowding Suppresses Mechanical Stress-Driven DNA Strand Separation.

Parth Rakesh Desai, John F Marko
{"title":"Molecular Crowding Suppresses Mechanical Stress-Driven DNA Strand Separation.","authors":"Parth Rakesh Desai, John F Marko","doi":"10.1101/2024.12.11.628023","DOIUrl":null,"url":null,"abstract":"<p><p>Molecular crowding influences DNA mechanics and DNA - protein interactions and is ubiquitous in living cells. Quantifying the effects of molecular crowding on DNA supercoiling is essential to relating <i>in-vitro</i> experiments to <i>in-vivo</i> DNA supercoiling. We use single molecule magnetic tweezers to study DNA supercoiling in the presence of dehydrating or crowding co-solutes. To study DNA supercoiling, we apply a stretching force of 0.8 pN to the DNA and then rotate one end of the DNA to induce supercoiling. In a 200 mM NaCl buffer without co-solutes, negatively supercoiled DNA absorbs some of the tortional stress by forming locally melted DNA regions. The base-pairs in these locally melted regions are believed to adopt a configuration where nucleotide base pairing is disrupted. We find that the presence of dehydrating co-solutes like glycerol and ethylene glycol results in further destabilization of base-pairs in negatively supercoiled DNA. The presence of polyethylene glycol, commonly used as crowding agents, suppresses local strand separation and results in plectoneme formation even when DNA is negatively supercoiled. The results presented in this letter suggest many further directions for studies of DNA supercoiling and supercoiled DNA - protein interactions in molecular conditions that approximate <i>in-vivo</i> molecular composition.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11661227/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.12.11.628023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Molecular crowding influences DNA mechanics and DNA - protein interactions and is ubiquitous in living cells. Quantifying the effects of molecular crowding on DNA supercoiling is essential to relating in-vitro experiments to in-vivo DNA supercoiling. We use single molecule magnetic tweezers to study DNA supercoiling in the presence of dehydrating or crowding co-solutes. To study DNA supercoiling, we apply a stretching force of 0.8 pN to the DNA and then rotate one end of the DNA to induce supercoiling. In a 200 mM NaCl buffer without co-solutes, negatively supercoiled DNA absorbs some of the tortional stress by forming locally melted DNA regions. The base-pairs in these locally melted regions are believed to adopt a configuration where nucleotide base pairing is disrupted. We find that the presence of dehydrating co-solutes like glycerol and ethylene glycol results in further destabilization of base-pairs in negatively supercoiled DNA. The presence of polyethylene glycol, commonly used as crowding agents, suppresses local strand separation and results in plectoneme formation even when DNA is negatively supercoiled. The results presented in this letter suggest many further directions for studies of DNA supercoiling and supercoiled DNA - protein interactions in molecular conditions that approximate in-vivo molecular composition.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信