Altered Purinergic Signaling and CD8+ T Cell Dysregulation in STAT3 GOF Syndrome.

Jose S Campos Duran, Samir Sayed, Megan C Dalalo, Andrea A Mauracher, Montana S Knight, Peyton E Conrey, Aaron B Schultz, Ceire A Hay, Robert B Lindell, Christian A Howard, Eric D Abrams, Erica G Schmitt, Martin A Thelin, Sarah Bluestein, Christine M Seroogy, Tamara C Pozos, Akaluck Thatayatikom, Ingrid Lundgren, Amelie Gauthier, Scott W Canna, Helen C Su, Michael D Keller, Ottavia M Delmonte, Lisa R Forbes Satter, Steven M Holland, Jenna R E Bergerson, Jennifer W Leiding, Neil Romberg, Alexandra F Freeman, Alejandro V Villarino, Mark S Anderson, Megan A Cooper, Tiphanie P Vogel, Sarah E Henrickson
{"title":"Altered Purinergic Signaling and CD8+ T Cell Dysregulation in STAT3 GOF Syndrome.","authors":"Jose S Campos Duran, Samir Sayed, Megan C Dalalo, Andrea A Mauracher, Montana S Knight, Peyton E Conrey, Aaron B Schultz, Ceire A Hay, Robert B Lindell, Christian A Howard, Eric D Abrams, Erica G Schmitt, Martin A Thelin, Sarah Bluestein, Christine M Seroogy, Tamara C Pozos, Akaluck Thatayatikom, Ingrid Lundgren, Amelie Gauthier, Scott W Canna, Helen C Su, Michael D Keller, Ottavia M Delmonte, Lisa R Forbes Satter, Steven M Holland, Jenna R E Bergerson, Jennifer W Leiding, Neil Romberg, Alexandra F Freeman, Alejandro V Villarino, Mark S Anderson, Megan A Cooper, Tiphanie P Vogel, Sarah E Henrickson","doi":"10.1101/2024.12.12.626682","DOIUrl":null,"url":null,"abstract":"<p><p>Signal transduction downstream of activating stimuli controls CD8+ T cell biology, however these external inputs can become uncoupled from transcriptional regulation in Primary Immune Regulatory Disorders (PIRDs). Gain-of-function (GOF) variants in STAT3 amplify cytokine signaling and cause a severe PIRD characterized by early onset autoimmunity, lymphoproliferation, recurrent infections, and immune dysregulation. In both primary human and mouse models of STAT3 GOF, CD8+ T cells have been implicated as pathogenic drivers of autoimmunity. The molecular mechanisms by which STAT3 GOF variants drive this pathology remain unclear. We found that naive CD8+ T cells have an increased capacity for IFN-g and TNF-a secretion. Given this dysregulation of CD8+ T cell function, we evaluated changes in immunoregulatory pathways and found evidence of dysregulated purinergic signaling via high dimensional immune profiling, single-cell RNA sequencing, and functional assessment. Specifically, while expression of CD39, which transforms ATP to AMP, was increased on CD8+ T cells from patients with STAT3 GOF, downstream purinergic family members, CD73 and the adenosine receptor, A2AR, were downregulated, impairing the potential to produce or sense inhibitory adenosine. Patients with STAT3 GOF can be clinically treated with JAK inhibitors, and this partially normalized naive CD8+ T cell dysregulation, including aberrant cytokine production. The extent of normalization scaled with normalization of CD73 and A2AR. This suggests that a dysregulated purinergic signaling axis plays an important role in CD8+ T cell dysregulation in STAT3 GOF, which may have implications for other inflammatory disorders with amplified STAT signaling.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11661228/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.12.12.626682","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Signal transduction downstream of activating stimuli controls CD8+ T cell biology, however these external inputs can become uncoupled from transcriptional regulation in Primary Immune Regulatory Disorders (PIRDs). Gain-of-function (GOF) variants in STAT3 amplify cytokine signaling and cause a severe PIRD characterized by early onset autoimmunity, lymphoproliferation, recurrent infections, and immune dysregulation. In both primary human and mouse models of STAT3 GOF, CD8+ T cells have been implicated as pathogenic drivers of autoimmunity. The molecular mechanisms by which STAT3 GOF variants drive this pathology remain unclear. We found that naive CD8+ T cells have an increased capacity for IFN-g and TNF-a secretion. Given this dysregulation of CD8+ T cell function, we evaluated changes in immunoregulatory pathways and found evidence of dysregulated purinergic signaling via high dimensional immune profiling, single-cell RNA sequencing, and functional assessment. Specifically, while expression of CD39, which transforms ATP to AMP, was increased on CD8+ T cells from patients with STAT3 GOF, downstream purinergic family members, CD73 and the adenosine receptor, A2AR, were downregulated, impairing the potential to produce or sense inhibitory adenosine. Patients with STAT3 GOF can be clinically treated with JAK inhibitors, and this partially normalized naive CD8+ T cell dysregulation, including aberrant cytokine production. The extent of normalization scaled with normalization of CD73 and A2AR. This suggests that a dysregulated purinergic signaling axis plays an important role in CD8+ T cell dysregulation in STAT3 GOF, which may have implications for other inflammatory disorders with amplified STAT signaling.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信