SUPERMAGO: Protein Function Prediction Based on Transformer Embeddings.

IF 3.2 4区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Gabriel Bianchin de Oliveira, Helio Pedrini, Zanoni Dias
{"title":"SUPERMAGO: Protein Function Prediction Based on Transformer Embeddings.","authors":"Gabriel Bianchin de Oliveira, Helio Pedrini, Zanoni Dias","doi":"10.1002/prot.26782","DOIUrl":null,"url":null,"abstract":"<p><p>Recent technological advancements have enabled the experimental determination of amino acid sequences for numerous proteins. However, analyzing protein functions, which is essential for understanding their roles within cells, remains a challenging task due to the associated costs and time constraints. To address this challenge, various computational approaches have been proposed to aid in the categorization of protein functions, mainly utilizing amino acid sequences. In this study, we introduce SUPERMAGO, a method that leverages amino acid sequences to predict protein functions. Our approach employs Transformer architectures, pre-trained on protein data, to extract features from the sequences. We use multilayer perceptrons for classification and a stacking neural network to aggregate the predictions, which significantly enhances the performance of our method. We also present SUPERMAGO+, an ensemble of SUPERMAGO and DIAMOND, based on neural networks that assign different weights to each term, offering a novel weighting mechanism compared with existing methods in the literature. Additionally, we introduce SUPERMAGO+Web, a web server-compatible version of SUPERMAGO+ designed to operate with reduced computational resources. Both SUPERMAGO and SUPERMAGO+ consistently outperformed state-of-the-art approaches in our evaluations, establishing them as leading methods for this task when considering only amino acid sequence information.</p>","PeriodicalId":56271,"journal":{"name":"Proteins-Structure Function and Bioinformatics","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteins-Structure Function and Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/prot.26782","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Recent technological advancements have enabled the experimental determination of amino acid sequences for numerous proteins. However, analyzing protein functions, which is essential for understanding their roles within cells, remains a challenging task due to the associated costs and time constraints. To address this challenge, various computational approaches have been proposed to aid in the categorization of protein functions, mainly utilizing amino acid sequences. In this study, we introduce SUPERMAGO, a method that leverages amino acid sequences to predict protein functions. Our approach employs Transformer architectures, pre-trained on protein data, to extract features from the sequences. We use multilayer perceptrons for classification and a stacking neural network to aggregate the predictions, which significantly enhances the performance of our method. We also present SUPERMAGO+, an ensemble of SUPERMAGO and DIAMOND, based on neural networks that assign different weights to each term, offering a novel weighting mechanism compared with existing methods in the literature. Additionally, we introduce SUPERMAGO+Web, a web server-compatible version of SUPERMAGO+ designed to operate with reduced computational resources. Both SUPERMAGO and SUPERMAGO+ consistently outperformed state-of-the-art approaches in our evaluations, establishing them as leading methods for this task when considering only amino acid sequence information.

基于变压器嵌入的蛋白质功能预测。
最近的技术进步已经使许多蛋白质的氨基酸序列的实验测定成为可能。然而,由于相关的成本和时间限制,分析蛋白质功能仍然是一项具有挑战性的任务,这对于理解它们在细胞内的作用至关重要。为了解决这一挑战,已经提出了各种计算方法来帮助蛋白质功能的分类,主要利用氨基酸序列。在这项研究中,我们介绍了SUPERMAGO,一种利用氨基酸序列预测蛋白质功能的方法。我们的方法采用Transformer架构,在蛋白质数据上进行预训练,从序列中提取特征。我们使用多层感知器进行分类,并使用堆叠神经网络进行汇总预测,这大大提高了我们的方法的性能。我们还提出了SUPERMAGO+, SUPERMAGO和DIAMOND的集成,基于神经网络,为每个术语分配不同的权重,与文献中现有的方法相比,提供了一种新的加权机制。此外,我们还介绍SUPERMAGO+Web, SUPERMAGO+的Web服务器兼容版本,旨在减少计算资源。SUPERMAGO和SUPERMAGO+在我们的评估中始终优于最先进的方法,在仅考虑氨基酸序列信息时,将它们确立为该任务的领先方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Proteins-Structure Function and Bioinformatics
Proteins-Structure Function and Bioinformatics 生物-生化与分子生物学
CiteScore
5.90
自引率
3.40%
发文量
172
审稿时长
3 months
期刊介绍: PROTEINS : Structure, Function, and Bioinformatics publishes original reports of significant experimental and analytic research in all areas of protein research: structure, function, computation, genetics, and design. The journal encourages reports that present new experimental or computational approaches for interpreting and understanding data from biophysical chemistry, structural studies of proteins and macromolecular assemblies, alterations of protein structure and function engineered through techniques of molecular biology and genetics, functional analyses under physiologic conditions, as well as the interactions of proteins with receptors, nucleic acids, or other specific ligands or substrates. Research in protein and peptide biochemistry directed toward synthesizing or characterizing molecules that simulate aspects of the activity of proteins, or that act as inhibitors of protein function, is also within the scope of PROTEINS. In addition to full-length reports, short communications (usually not more than 4 printed pages) and prediction reports are welcome. Reviews are typically by invitation; authors are encouraged to submit proposed topics for consideration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信