Exploring Compactness and Dynamics of Apomyoglobin.

IF 3.2 4区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Proteins-Structure Function and Bioinformatics Pub Date : 2025-05-01 Epub Date: 2024-12-23 DOI:10.1002/prot.26786
Anna V Glyakina, Mariya Y Suvorina, Nikita V Dovidchenko, Natalya S Katina, Alexey K Surin, Oxana V Galzitskaya
{"title":"Exploring Compactness and Dynamics of Apomyoglobin.","authors":"Anna V Glyakina, Mariya Y Suvorina, Nikita V Dovidchenko, Natalya S Katina, Alexey K Surin, Oxana V Galzitskaya","doi":"10.1002/prot.26786","DOIUrl":null,"url":null,"abstract":"<p><p>Hydrogen-deuterium exchange mass spectrometry (HDX-MS) approach has become a valuable analytical complement to traditional methods. HDX-MS allows the identification of dynamic surfaces in proteins. We have shown that the introduction of various mutations into the amino acid sequence of whale apomyoglobin (apoMb) leads to a change in the number of exchangeable hydrogen atoms, which is associated with a change in its compactness in the native-like condition. Thus, amino acid substitutions V10A, A15S, P120G, and M131A result in an increase in the number of exchangeable hydrogen atoms at the native-like condition, while the mutant form A144S leads to a decrease in the number of exchangeable hydrogen atoms. This may be due to a decrease and increase in the compactness of apoMb structure compared to the wild-type apoMb, respectively. The L9F and L9E mutations did not affect the compactness of the molecule compared to the wild type. We have demonstrated that V10A and M131A substitutions lead to the maximum and large increase correspondently in the average number of exchangeable hydrogen atoms for deuterium, since these substitutions lead to the loss of contacts between important parts of myoglobin structure: helices A, G, and H, which are structured at the early stage of folding.</p>","PeriodicalId":56271,"journal":{"name":"Proteins-Structure Function and Bioinformatics","volume":" ","pages":"997-1008"},"PeriodicalIF":3.2000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteins-Structure Function and Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/prot.26786","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/23 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrogen-deuterium exchange mass spectrometry (HDX-MS) approach has become a valuable analytical complement to traditional methods. HDX-MS allows the identification of dynamic surfaces in proteins. We have shown that the introduction of various mutations into the amino acid sequence of whale apomyoglobin (apoMb) leads to a change in the number of exchangeable hydrogen atoms, which is associated with a change in its compactness in the native-like condition. Thus, amino acid substitutions V10A, A15S, P120G, and M131A result in an increase in the number of exchangeable hydrogen atoms at the native-like condition, while the mutant form A144S leads to a decrease in the number of exchangeable hydrogen atoms. This may be due to a decrease and increase in the compactness of apoMb structure compared to the wild-type apoMb, respectively. The L9F and L9E mutations did not affect the compactness of the molecule compared to the wild type. We have demonstrated that V10A and M131A substitutions lead to the maximum and large increase correspondently in the average number of exchangeable hydrogen atoms for deuterium, since these substitutions lead to the loss of contacts between important parts of myoglobin structure: helices A, G, and H, which are structured at the early stage of folding.

无肌红蛋白的致密性和动力学研究。
氢-氘交换质谱(HDX-MS)方法已成为传统分析方法的宝贵补充。HDX-MS可以识别蛋白质中的动态表面。我们已经证明,在鲸鱼无肌红蛋白(apoMb)的氨基酸序列中引入各种突变会导致可交换氢原子数量的变化,这与在原生条件下其致密性的变化有关。因此,氨基酸取代V10A、A15S、P120G和M131A在原生条件下导致可交换氢原子数量增加,而突变形式A144S导致可交换氢原子数量减少。这可能是由于与野生型apoMb相比,apoMb结构的紧凑度分别有所降低和增加。与野生型相比,L9F和L9E突变没有影响分子的致密性。我们已经证明,V10A和M131A取代导致氘的平均可交换氢原子数量的最大和大幅增加,因为这些取代导致肌红蛋白结构的重要部分之间的接触丧失:螺旋A, G和H,它们是在折叠的早期阶段结构的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Proteins-Structure Function and Bioinformatics
Proteins-Structure Function and Bioinformatics 生物-生化与分子生物学
CiteScore
5.90
自引率
3.40%
发文量
172
审稿时长
3 months
期刊介绍: PROTEINS : Structure, Function, and Bioinformatics publishes original reports of significant experimental and analytic research in all areas of protein research: structure, function, computation, genetics, and design. The journal encourages reports that present new experimental or computational approaches for interpreting and understanding data from biophysical chemistry, structural studies of proteins and macromolecular assemblies, alterations of protein structure and function engineered through techniques of molecular biology and genetics, functional analyses under physiologic conditions, as well as the interactions of proteins with receptors, nucleic acids, or other specific ligands or substrates. Research in protein and peptide biochemistry directed toward synthesizing or characterizing molecules that simulate aspects of the activity of proteins, or that act as inhibitors of protein function, is also within the scope of PROTEINS. In addition to full-length reports, short communications (usually not more than 4 printed pages) and prediction reports are welcome. Reviews are typically by invitation; authors are encouraged to submit proposed topics for consideration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信