Radiomics analysis of thoracic vertebral bone marrow microenvironment changes before bone metastasis of breast cancer based on chest CT

IF 3.4 2区 医学 Q2 Medicine
Hao-Nan Zhu , Yi-Fan Guo , YingMin Lin , Zhi-Chao Sun , Xi Zhu , YuanZhe Li
{"title":"Radiomics analysis of thoracic vertebral bone marrow microenvironment changes before bone metastasis of breast cancer based on chest CT","authors":"Hao-Nan Zhu ,&nbsp;Yi-Fan Guo ,&nbsp;YingMin Lin ,&nbsp;Zhi-Chao Sun ,&nbsp;Xi Zhu ,&nbsp;YuanZhe Li","doi":"10.1016/j.jbo.2024.100653","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Bone metastasis from breast cancer significantly elevates patient morbidity and mortality, making early detection crucial for improving outcomes. This study utilizes radiomics to analyze changes in the thoracic vertebral bone marrow microenvironment from chest computerized tomography (CT) images prior to bone metastasis in breast cancer, and constructs a model to predict metastasis. Methods: This study retrospectively gathered data from breast cancer patients who were diagnosed and continuously monitored for five years from January 2013 to September 2023. Radiomic features were extracted from the bone marrow of thoracic vertebrae on non-contrast chest CT scans. Multiple machine learning algorithms were utilized to construct various radiomics models for predicting the risk of bone metastasis, and the model with optimal performance was integrated with clinical features to develop a nomogram. The effectiveness of this combined model was assessed through receiver operating characteristic (ROC) analysis as well as decision curve analysis (DCA). Results: The study included a total of 106 patients diagnosed with breast cancer, among whom 37 developed bone metastases within five years. The radiomics model’s area under the curve (AUC) for the test set, calculated using logistic regression, is 0.929, demonstrating superior predictive performance compared to alternative machine learning models. Furthermore, DCA demonstrated the potential of radiomics models in clinical application, with a greater clinical benefit in predicting bone metastasis than clinical model and nomogram. Conclusion: CT-based radiomics can capture subtle changes in the thoracic vertebral bone marrow before breast cancer bone metastasis, offering a predictive tool for early detection of bone metastasis in breast cancer.</div></div>","PeriodicalId":48806,"journal":{"name":"Journal of Bone Oncology","volume":"50 ","pages":"Article 100653"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11655691/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bone Oncology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212137424001337","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Bone metastasis from breast cancer significantly elevates patient morbidity and mortality, making early detection crucial for improving outcomes. This study utilizes radiomics to analyze changes in the thoracic vertebral bone marrow microenvironment from chest computerized tomography (CT) images prior to bone metastasis in breast cancer, and constructs a model to predict metastasis. Methods: This study retrospectively gathered data from breast cancer patients who were diagnosed and continuously monitored for five years from January 2013 to September 2023. Radiomic features were extracted from the bone marrow of thoracic vertebrae on non-contrast chest CT scans. Multiple machine learning algorithms were utilized to construct various radiomics models for predicting the risk of bone metastasis, and the model with optimal performance was integrated with clinical features to develop a nomogram. The effectiveness of this combined model was assessed through receiver operating characteristic (ROC) analysis as well as decision curve analysis (DCA). Results: The study included a total of 106 patients diagnosed with breast cancer, among whom 37 developed bone metastases within five years. The radiomics model’s area under the curve (AUC) for the test set, calculated using logistic regression, is 0.929, demonstrating superior predictive performance compared to alternative machine learning models. Furthermore, DCA demonstrated the potential of radiomics models in clinical application, with a greater clinical benefit in predicting bone metastasis than clinical model and nomogram. Conclusion: CT-based radiomics can capture subtle changes in the thoracic vertebral bone marrow before breast cancer bone metastasis, offering a predictive tool for early detection of bone metastasis in breast cancer.

Abstract Image

胸部CT对乳腺癌骨转移前胸椎骨髓微环境变化的放射组学分析。
乳腺癌骨转移会显著提高患者的发病率和死亡率,因此早期发现对改善预后至关重要。本研究利用放射组学分析乳腺癌骨转移前胸部计算机断层扫描(CT)图像中胸椎骨髓微环境的变化,并构建预测转移的模型。方法:本研究回顾性收集2013年1月至2023年9月诊断并连续监测5年的乳腺癌患者资料。在非对比胸部CT扫描中提取胸椎骨髓放射学特征。利用多种机器学习算法构建各种预测骨转移风险的放射组学模型,并将性能最优的模型与临床特征相结合形成nomogram。通过受试者工作特征(ROC)分析和决策曲线分析(DCA)评估该联合模型的有效性。结果:该研究共纳入106例诊断为乳腺癌的患者,其中37例在5年内发生骨转移。使用逻辑回归计算,radiomics模型的测试集曲线下面积(AUC)为0.929,与其他机器学习模型相比,显示出优越的预测性能。此外,DCA显示放射组学模型在临床应用中的潜力,在预测骨转移方面比临床模型和nomogram有更大的临床效益。结论:基于ct的放射组学可以捕捉乳腺癌骨转移前胸椎骨髓的细微变化,为早期发现乳腺癌骨转移提供预测工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
2.90%
发文量
50
审稿时长
34 days
期刊介绍: The Journal of Bone Oncology is a peer-reviewed international journal aimed at presenting basic, translational and clinical high-quality research related to bone and cancer. As the first journal dedicated to cancer induced bone diseases, JBO welcomes original research articles, review articles, editorials and opinion pieces. Case reports will only be considered in exceptional circumstances and only when accompanied by a comprehensive review of the subject. The areas covered by the journal include: Bone metastases (pathophysiology, epidemiology, diagnostics, clinical features, prevention, treatment) Preclinical models of metastasis Bone microenvironment in cancer (stem cell, bone cell and cancer interactions) Bone targeted therapy (pharmacology, therapeutic targets, drug development, clinical trials, side-effects, outcome research, health economics) Cancer treatment induced bone loss (epidemiology, pathophysiology, prevention and management) Bone imaging (clinical and animal, skeletal interventional radiology) Bone biomarkers (clinical and translational applications) Radiotherapy and radio-isotopes Skeletal complications Bone pain (mechanisms and management) Orthopaedic cancer surgery Primary bone tumours Clinical guidelines Multidisciplinary care Keywords: bisphosphonate, bone, breast cancer, cancer, CTIBL, denosumab, metastasis, myeloma, osteoblast, osteoclast, osteooncology, osteo-oncology, prostate cancer, skeleton, tumour.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信