Modernizing histopathological analysis: a fully automated workflow for the digital image analysis of the intestinal microcolony survival assay.

Alexander Baikalov, Ethan Wang, Denae Neill, Nihar Shetty, Trey Waldrop, Kevin Liu, Abagail Delahousessaye, Edgardo Aguilar, Nefetiti Mims, Stefan Bartzsch, Emil Schüler
{"title":"Modernizing histopathological analysis: a fully automated workflow for the digital image analysis of the intestinal microcolony survival assay.","authors":"Alexander Baikalov, Ethan Wang, Denae Neill, Nihar Shetty, Trey Waldrop, Kevin Liu, Abagail Delahousessaye, Edgardo Aguilar, Nefetiti Mims, Stefan Bartzsch, Emil Schüler","doi":"10.1101/2024.12.09.627578","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Manual analysis of histopathological images is often not only time-consuming and painstaking but also prone to error from subjective evaluation criteria and human error. To address these issues, we created a fully automated workflow to enumerate jejunal crypts in a microcolony survival assay to quantify gastrointestinal damage from radiation.</p><p><strong>Methods and materials: </strong>After abdominal irradiation of mice, jejuna were obtained and prepared on histopathologic slides, and crypts were counted manually by trained individuals. The automated workflow (AW) involved obtaining images of jejunal slices from the irradiated mice, followed by cropping and normalizing the individual slice images for resolution and color; using deep learning-based semantic image segmentation to detect crypts on each slice; using a tailored algorithm to enumerate the crypts; and tabulating and saving the results. A graphical user interface (GUI) was developed to allow users to review and correct the automated results.</p><p><strong>Results: </strong>Crypts counted manually exhibited a mean absolute percent deviation of (34 ± 26)% between individuals vs the group mean across counters, which was reduced to (11 ± 6)% across the 3 most-experienced counters. The AW processed a sample image dataset from 60 mice in a few hours and required only a few minutes of active user effort. AW counts deviated from experts' mean counts by (10 ± 8)%. The AW thereby allowed rapid, automated evaluation of the microcolony survival assay with accuracy comparable to that of trained experts and without subjective inter-observer variation.</p><p><strong>Highlights: </strong>We fully automated the digital image analysis of a microcolony survival assayAnalyzing 540 images takes a few hours with only minutes of active user effortThe automated workflow (AW) is just as accurate as trained expertsThe AW eliminates subjective inter-observer variation and human errorHuman review possible with built-in graphical user interface.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11661163/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.12.09.627578","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Manual analysis of histopathological images is often not only time-consuming and painstaking but also prone to error from subjective evaluation criteria and human error. To address these issues, we created a fully automated workflow to enumerate jejunal crypts in a microcolony survival assay to quantify gastrointestinal damage from radiation.

Methods and materials: After abdominal irradiation of mice, jejuna were obtained and prepared on histopathologic slides, and crypts were counted manually by trained individuals. The automated workflow (AW) involved obtaining images of jejunal slices from the irradiated mice, followed by cropping and normalizing the individual slice images for resolution and color; using deep learning-based semantic image segmentation to detect crypts on each slice; using a tailored algorithm to enumerate the crypts; and tabulating and saving the results. A graphical user interface (GUI) was developed to allow users to review and correct the automated results.

Results: Crypts counted manually exhibited a mean absolute percent deviation of (34 ± 26)% between individuals vs the group mean across counters, which was reduced to (11 ± 6)% across the 3 most-experienced counters. The AW processed a sample image dataset from 60 mice in a few hours and required only a few minutes of active user effort. AW counts deviated from experts' mean counts by (10 ± 8)%. The AW thereby allowed rapid, automated evaluation of the microcolony survival assay with accuracy comparable to that of trained experts and without subjective inter-observer variation.

Highlights: We fully automated the digital image analysis of a microcolony survival assayAnalyzing 540 images takes a few hours with only minutes of active user effortThe automated workflow (AW) is just as accurate as trained expertsThe AW eliminates subjective inter-observer variation and human errorHuman review possible with built-in graphical user interface.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信