Machine Learning Driven by Magnetic Resonance Imaging for the Classification of Alzheimer Disease Progression: Systematic Review and Meta-Analysis.

IF 5 Q1 GERIATRICS & GERONTOLOGY
JMIR Aging Pub Date : 2024-12-23 DOI:10.2196/59370
Gopi Battineni, Nalini Chintalapudi, Francesco Amenta
{"title":"Machine Learning Driven by Magnetic Resonance Imaging for the Classification of Alzheimer Disease Progression: Systematic Review and Meta-Analysis.","authors":"Gopi Battineni, Nalini Chintalapudi, Francesco Amenta","doi":"10.2196/59370","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>To diagnose Alzheimer disease (AD), individuals are classified according to the severity of their cognitive impairment. There are currently no specific causes or conditions for this disease.</p><p><strong>Objective: </strong>The purpose of this systematic review and meta-analysis was to assess AD prevalence across different stages using machine learning (ML) approaches comprehensively.</p><p><strong>Methods: </strong>The selection of papers was conducted in 3 phases, as per PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) 2020 guidelines: identification, screening, and final inclusion. The final analysis included 24 papers that met the criteria. The selection of ML approaches for AD diagnosis was rigorously based on their relevance to the investigation. The prevalence of patients with AD at 2, 3, 4, and 6 stages was illustrated through the use of forest plots.</p><p><strong>Results: </strong>The prevalence rate for both cognitively normal (CN) and AD across 6 studies was 49.28% (95% CI 46.12%-52.45%; P=.32). The prevalence estimate for the 3 stages of cognitive impairment (CN, mild cognitive impairment, and AD) is 29.75% (95% CI 25.11%-34.84%, P<.001). Among 5 studies with 14,839 participants, the analysis of 4 stages (nondemented, moderately demented, mildly demented, and AD) found an overall prevalence of 13.13% (95% CI 3.75%-36.66%; P<.001). In addition, 4 studies involving 3819 participants estimated the prevalence of 6 stages (CN, significant memory concern, early mild cognitive impairment, mild cognitive impairment, late mild cognitive impairment, and AD), yielding a prevalence of 23.75% (95% CI 12.22%-41.12%; P<.001).</p><p><strong>Conclusions: </strong>The significant heterogeneity observed across studies reveals that demographic and setting characteristics are responsible for the impact on AD prevalence estimates. This study shows how ML approaches can be used to describe AD prevalence across different stages, which provides valuable insights for future research.</p>","PeriodicalId":36245,"journal":{"name":"JMIR Aging","volume":"7 ","pages":"e59370"},"PeriodicalIF":5.0000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR Aging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2196/59370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: To diagnose Alzheimer disease (AD), individuals are classified according to the severity of their cognitive impairment. There are currently no specific causes or conditions for this disease.

Objective: The purpose of this systematic review and meta-analysis was to assess AD prevalence across different stages using machine learning (ML) approaches comprehensively.

Methods: The selection of papers was conducted in 3 phases, as per PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) 2020 guidelines: identification, screening, and final inclusion. The final analysis included 24 papers that met the criteria. The selection of ML approaches for AD diagnosis was rigorously based on their relevance to the investigation. The prevalence of patients with AD at 2, 3, 4, and 6 stages was illustrated through the use of forest plots.

Results: The prevalence rate for both cognitively normal (CN) and AD across 6 studies was 49.28% (95% CI 46.12%-52.45%; P=.32). The prevalence estimate for the 3 stages of cognitive impairment (CN, mild cognitive impairment, and AD) is 29.75% (95% CI 25.11%-34.84%, P<.001). Among 5 studies with 14,839 participants, the analysis of 4 stages (nondemented, moderately demented, mildly demented, and AD) found an overall prevalence of 13.13% (95% CI 3.75%-36.66%; P<.001). In addition, 4 studies involving 3819 participants estimated the prevalence of 6 stages (CN, significant memory concern, early mild cognitive impairment, mild cognitive impairment, late mild cognitive impairment, and AD), yielding a prevalence of 23.75% (95% CI 12.22%-41.12%; P<.001).

Conclusions: The significant heterogeneity observed across studies reveals that demographic and setting characteristics are responsible for the impact on AD prevalence estimates. This study shows how ML approaches can be used to describe AD prevalence across different stages, which provides valuable insights for future research.

求助全文
约1分钟内获得全文 求助全文
来源期刊
JMIR Aging
JMIR Aging Social Sciences-Health (social science)
CiteScore
6.50
自引率
4.10%
发文量
71
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信