Open-source LLMs for text annotation: a practical guide for model setting and fine-tuning.

IF 2 Q2 SOCIAL SCIENCES, MATHEMATICAL METHODS
Journal of Computational Social Science Pub Date : 2025-01-01 Epub Date: 2024-12-18 DOI:10.1007/s42001-024-00345-9
Meysam Alizadeh, Maël Kubli, Zeynab Samei, Shirin Dehghani, Mohammadmasiha Zahedivafa, Juan D Bermeo, Maria Korobeynikova, Fabrizio Gilardi
{"title":"Open-source LLMs for text annotation: a practical guide for model setting and fine-tuning.","authors":"Meysam Alizadeh, Maël Kubli, Zeynab Samei, Shirin Dehghani, Mohammadmasiha Zahedivafa, Juan D Bermeo, Maria Korobeynikova, Fabrizio Gilardi","doi":"10.1007/s42001-024-00345-9","DOIUrl":null,"url":null,"abstract":"<p><p>This paper studies the performance of open-source Large Language Models (LLMs) in text classification tasks typical for political science research. By examining tasks like stance, topic, and relevance classification, we aim to guide scholars in making informed decisions about their use of LLMs for text analysis and to establish a baseline performance benchmark that demonstrates the models' effectiveness. Specifically, we conduct an assessment of both zero-shot and fine-tuned LLMs across a range of text annotation tasks using news articles and tweets datasets. Our analysis shows that fine-tuning improves the performance of open-source LLMs, allowing them to match or even surpass zero-shot GPT <math><mo>-</mo></math> 3.5 and GPT-4, though still lagging behind fine-tuned GPT <math><mo>-</mo></math> 3.5. We further establish that fine-tuning is preferable to few-shot training with a relatively modest quantity of annotated text. Our findings show that fine-tuned open-source LLMs can be effectively deployed in a broad spectrum of text annotation applications. We provide a Python notebook facilitating the application of LLMs in text annotation for other researchers.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s42001-024-00345-9.</p>","PeriodicalId":29946,"journal":{"name":"Journal of Computational Social Science","volume":"8 1","pages":"17"},"PeriodicalIF":2.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11655591/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Social Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s42001-024-00345-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper studies the performance of open-source Large Language Models (LLMs) in text classification tasks typical for political science research. By examining tasks like stance, topic, and relevance classification, we aim to guide scholars in making informed decisions about their use of LLMs for text analysis and to establish a baseline performance benchmark that demonstrates the models' effectiveness. Specifically, we conduct an assessment of both zero-shot and fine-tuned LLMs across a range of text annotation tasks using news articles and tweets datasets. Our analysis shows that fine-tuning improves the performance of open-source LLMs, allowing them to match or even surpass zero-shot GPT - 3.5 and GPT-4, though still lagging behind fine-tuned GPT - 3.5. We further establish that fine-tuning is preferable to few-shot training with a relatively modest quantity of annotated text. Our findings show that fine-tuned open-source LLMs can be effectively deployed in a broad spectrum of text annotation applications. We provide a Python notebook facilitating the application of LLMs in text annotation for other researchers.

Supplementary information: The online version contains supplementary material available at 10.1007/s42001-024-00345-9.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Computational Social Science
Journal of Computational Social Science SOCIAL SCIENCES, MATHEMATICAL METHODS-
CiteScore
6.20
自引率
6.20%
发文量
30
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信