Chun-Yi Lin, Jacobo Robledo Buritica, Poulami Sarkar, Ola Jassar, Sâmara Vieira Rocha, Ozgur Batuman, Lukasz L Stelinski, Amit Levy
{"title":"An insect virus differentially alters gene expression among life stages of an insect vector and enhances bacterial phytopathogen transmission.","authors":"Chun-Yi Lin, Jacobo Robledo Buritica, Poulami Sarkar, Ola Jassar, Sâmara Vieira Rocha, Ozgur Batuman, Lukasz L Stelinski, Amit Levy","doi":"10.1128/jvi.01630-24","DOIUrl":null,"url":null,"abstract":"<p><p><i>Diaphorina citri</i> transmits <i>Candidatus</i> Liberibacter asiaticus (CLas) between citrus plants which causes the expression of huanglongbing disease in citrus. <i>D. citri</i> flavi-like virus (DcFLV) co-occurs intracellularly with CLas in <i>D. citri</i> populations in the field. However, the impact(s) of DcFLV presence on the insect vector and its interaction with the CLas phytopathogen remain unclear. We compared CLas acquisition and transmission efficiencies as well as transcriptomic expression between viruliferous and non-viruliferous psyllids at multiple life stages. Viruliferous nymphs acquired higher titers of CLas than non-viruliferous nymphs, whereas viruliferous adults acquired less CLas than those without virus. The presence of DcFLV increased the transmission of CLas by both nymphs and adults. Furthermore, RNA-seq and functional gene expression analyses revealed that endoplasmic reticulum stress-, autophagy-, and defense-related genes were significantly upregulated in viruliferous adult psyllids, whereas most of these genes were downregulated in viruliferous nymphs. Our work demonstrates that DcFLV differentially modulates various cellular and physiological functions in <i>D. citri</i> in a life stage-dependent manner and promotes the acquisition of CLas at the nymphal stage and transmission of the pathogen at the adult stage of the vector. Collectively, our results suggest that <i>D. citri</i> vectors with DcFLV exhibit greater pathogen transmission efficiency than those without virus.</p><p><strong>Importance: </strong>Huanglongbing (HLB), caused by fastidious bacteria from three <i>Candidatus</i> Liberibacter species, is the most damaging disease impacting the citrus industry worldwide. Spread by the Asian citrus psyllid (<i>Diaphorina citri</i>) in Asia and the Americas, HLB causes substantial financial losses, and has reduced citrus production in Florida by more than 90%. Although there are ongoing efforts to limit spread of the disease, effective HLB management remains elusive. Suppressing vector populations and decreasing CLas transmission are the two strategies that need to be urgently improved. Recently, a <i>D. citri</i> flavi-like virus (DcFLV) was characterized within its <i>D. citri</i> host, and it co-occurs intracellularly with CLas in psyllid populations. Here, we show that viruliferous nymphs exhibit higher CLas acquisition than non-viruliferous nymphs. Furthermore, both viruliferous adults and nymphs exhibit increased CLas transmission efficiency. We suggest the possibility of manipulating DcFLV in <i>D. citri</i> populations to reduce CLas transmission for HLB disease management.</p>","PeriodicalId":17583,"journal":{"name":"Journal of Virology","volume":" ","pages":"e0163024"},"PeriodicalIF":4.0000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Virology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1128/jvi.01630-24","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Diaphorina citri transmits Candidatus Liberibacter asiaticus (CLas) between citrus plants which causes the expression of huanglongbing disease in citrus. D. citri flavi-like virus (DcFLV) co-occurs intracellularly with CLas in D. citri populations in the field. However, the impact(s) of DcFLV presence on the insect vector and its interaction with the CLas phytopathogen remain unclear. We compared CLas acquisition and transmission efficiencies as well as transcriptomic expression between viruliferous and non-viruliferous psyllids at multiple life stages. Viruliferous nymphs acquired higher titers of CLas than non-viruliferous nymphs, whereas viruliferous adults acquired less CLas than those without virus. The presence of DcFLV increased the transmission of CLas by both nymphs and adults. Furthermore, RNA-seq and functional gene expression analyses revealed that endoplasmic reticulum stress-, autophagy-, and defense-related genes were significantly upregulated in viruliferous adult psyllids, whereas most of these genes were downregulated in viruliferous nymphs. Our work demonstrates that DcFLV differentially modulates various cellular and physiological functions in D. citri in a life stage-dependent manner and promotes the acquisition of CLas at the nymphal stage and transmission of the pathogen at the adult stage of the vector. Collectively, our results suggest that D. citri vectors with DcFLV exhibit greater pathogen transmission efficiency than those without virus.
Importance: Huanglongbing (HLB), caused by fastidious bacteria from three Candidatus Liberibacter species, is the most damaging disease impacting the citrus industry worldwide. Spread by the Asian citrus psyllid (Diaphorina citri) in Asia and the Americas, HLB causes substantial financial losses, and has reduced citrus production in Florida by more than 90%. Although there are ongoing efforts to limit spread of the disease, effective HLB management remains elusive. Suppressing vector populations and decreasing CLas transmission are the two strategies that need to be urgently improved. Recently, a D. citri flavi-like virus (DcFLV) was characterized within its D. citri host, and it co-occurs intracellularly with CLas in psyllid populations. Here, we show that viruliferous nymphs exhibit higher CLas acquisition than non-viruliferous nymphs. Furthermore, both viruliferous adults and nymphs exhibit increased CLas transmission efficiency. We suggest the possibility of manipulating DcFLV in D. citri populations to reduce CLas transmission for HLB disease management.
期刊介绍:
Journal of Virology (JVI) explores the nature of the viruses of animals, archaea, bacteria, fungi, plants, and protozoa. We welcome papers on virion structure and assembly, viral genome replication and regulation of gene expression, genetic diversity and evolution, virus-cell interactions, cellular responses to infection, transformation and oncogenesis, gene delivery, viral pathogenesis and immunity, and vaccines and antiviral agents.