Comparative Analysis of Polystyrene versus Zirconia Beads on Breakage Kinetics, Heat Generation, and Amorphous Formation during Wet Bead Milling.

IF 3.7 3区 医学 Q2 CHEMISTRY, MEDICINAL
Gulenay Guner, Hamidreza Heidari, Kaitlyn Lehman, Parind M Desai, Don Clancy, Ecevit Bilgili, Sayantan Chattoraj
{"title":"Comparative Analysis of Polystyrene versus Zirconia Beads on Breakage Kinetics, Heat Generation, and Amorphous Formation during Wet Bead Milling.","authors":"Gulenay Guner, Hamidreza Heidari, Kaitlyn Lehman, Parind M Desai, Don Clancy, Ecevit Bilgili, Sayantan Chattoraj","doi":"10.1016/j.xphs.2024.11.029","DOIUrl":null,"url":null,"abstract":"<p><p>This study determined process conditions under which polystyrene (CPS) and zirconia (YSZ) beads cause similar breakage kinetics and temperature rise during manufacturing of drug nanosuspensions via wet bead milling and explored relative advantages of CPS beads, particularly for stress-sensitive compounds. Besides temperature and particle size measurements, a microhydrodynamic-based kinetic model simulated the conditions for CPS to achieve breakage rates equivalent to those of YSZ. A power law correlation was applied to find conditions conducive to temperature equivalency. The maximum contact pressure and pseudo energy dissipation rate were calculated under these equivalency conditions. When bead loading for CPS was increased to match with YSZ, lower temperature at similar breakage conditions or faster breakage at the same temperature was achieved. Increasing the tip speed did not provide any notable advantages for CPS over YSZ in terms of breakage kinetics or temperature. However, under all conditions investigated, CPS beads exhibited markedly lower maximum contact pressure and pseudo energy dissipation rate, which may correlate with reduced mechanically induced amorphization during milling. A proof-of-concept study demonstrated that a mechanical stress-sensitive drug had lower amorphous generation with CPS compared to YSZ. Therefore, CPS beads are a promising alternative to YSZ beads, especially when used at the highest feasible loading.</p>","PeriodicalId":16741,"journal":{"name":"Journal of pharmaceutical sciences","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmaceutical sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.xphs.2024.11.029","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study determined process conditions under which polystyrene (CPS) and zirconia (YSZ) beads cause similar breakage kinetics and temperature rise during manufacturing of drug nanosuspensions via wet bead milling and explored relative advantages of CPS beads, particularly for stress-sensitive compounds. Besides temperature and particle size measurements, a microhydrodynamic-based kinetic model simulated the conditions for CPS to achieve breakage rates equivalent to those of YSZ. A power law correlation was applied to find conditions conducive to temperature equivalency. The maximum contact pressure and pseudo energy dissipation rate were calculated under these equivalency conditions. When bead loading for CPS was increased to match with YSZ, lower temperature at similar breakage conditions or faster breakage at the same temperature was achieved. Increasing the tip speed did not provide any notable advantages for CPS over YSZ in terms of breakage kinetics or temperature. However, under all conditions investigated, CPS beads exhibited markedly lower maximum contact pressure and pseudo energy dissipation rate, which may correlate with reduced mechanically induced amorphization during milling. A proof-of-concept study demonstrated that a mechanical stress-sensitive drug had lower amorphous generation with CPS compared to YSZ. Therefore, CPS beads are a promising alternative to YSZ beads, especially when used at the highest feasible loading.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.30
自引率
13.20%
发文量
367
审稿时长
33 days
期刊介绍: The Journal of Pharmaceutical Sciences will publish original research papers, original research notes, invited topical reviews (including Minireviews), and editorial commentary and news. The area of focus shall be concepts in basic pharmaceutical science and such topics as chemical processing of pharmaceuticals, including crystallization, lyophilization, chemical stability of drugs, pharmacokinetics, biopharmaceutics, pharmacodynamics, pro-drug developments, metabolic disposition of bioactive agents, dosage form design, protein-peptide chemistry and biotechnology specifically as these relate to pharmaceutical technology, and targeted drug delivery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信