Nobushige Tsuboi, Kimberly A Rivera-Caraballo, Upasana Sahu, Rafal Pacholczyk, Eugene Douglass, Theodore S Johnson, Qin Wang, Ravindra Kolhe, Catherine C Hedrick, David H Munn, Bangxing Hong
{"title":"Blocking feedback immunosuppression of antigen presentation in brain tumor during oncolytic virotherapy with oHSV-mshPKR.","authors":"Nobushige Tsuboi, Kimberly A Rivera-Caraballo, Upasana Sahu, Rafal Pacholczyk, Eugene Douglass, Theodore S Johnson, Qin Wang, Ravindra Kolhe, Catherine C Hedrick, David H Munn, Bangxing Hong","doi":"10.1158/1535-7163.MCT-24-0629","DOIUrl":null,"url":null,"abstract":"<p><p>Glioblastoma (GBM) is the most frequent malignant brain tumor. We recently discovered that oncolytic herpes simplex virus engineered to disable tumor-intrinsic protein kinase R (PKR) signaling (oHSV-shPKR) could increase oHSV oncolysis and anti-tumor immune response. However, here we show that disabling tumor-intrinsic PKR signaling can also induce the activation of the indoleamine 2,3-dioxygenase (IDO) signaling pathway. Both GBM tumor progression and oHSV intratumoral therapy increased infiltration of IDO+CD11c+ dendritic cells into the tumor. The coculture of oHSV-infected human GBM neurospheres with monocytes-derived dendritic cells (MoDCs) dramatically increased IDO signaling activation in MoDCs through type-I interferon signaling. Addition of IDO inhibitor (indoximod) in the coculture significantly increased MoDCs activation and reduced the consumption of tryptophan. Combining indoximod and oHSV significantly inhibited tumor growth, and induced antigen specific CD8+ T cell activation. These results suggest that inhibition of the IDO pathway could significantly block feedback immunosuppression during oncolytic virotherapy of glioblastoma.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/1535-7163.MCT-24-0629","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Glioblastoma (GBM) is the most frequent malignant brain tumor. We recently discovered that oncolytic herpes simplex virus engineered to disable tumor-intrinsic protein kinase R (PKR) signaling (oHSV-shPKR) could increase oHSV oncolysis and anti-tumor immune response. However, here we show that disabling tumor-intrinsic PKR signaling can also induce the activation of the indoleamine 2,3-dioxygenase (IDO) signaling pathway. Both GBM tumor progression and oHSV intratumoral therapy increased infiltration of IDO+CD11c+ dendritic cells into the tumor. The coculture of oHSV-infected human GBM neurospheres with monocytes-derived dendritic cells (MoDCs) dramatically increased IDO signaling activation in MoDCs through type-I interferon signaling. Addition of IDO inhibitor (indoximod) in the coculture significantly increased MoDCs activation and reduced the consumption of tryptophan. Combining indoximod and oHSV significantly inhibited tumor growth, and induced antigen specific CD8+ T cell activation. These results suggest that inhibition of the IDO pathway could significantly block feedback immunosuppression during oncolytic virotherapy of glioblastoma.
期刊介绍:
Molecular Cancer Therapeutics will focus on basic research that has implications for cancer therapeutics in the following areas: Experimental Cancer Therapeutics, Identification of Molecular Targets, Targets for Chemoprevention, New Models, Cancer Chemistry and Drug Discovery, Molecular and Cellular Pharmacology, Molecular Classification of Tumors, and Bioinformatics and Computational Molecular Biology. The journal provides a publication forum for these emerging disciplines that is focused specifically on cancer research. Papers are stringently reviewed and only those that report results of novel, timely, and significant research and meet high standards of scientific merit will be accepted for publication.