Ivana Soledad Friedman, Edgardo Martín Contreras, Analia Verónica Fernández-Gimenez
{"title":"Recovery of alkaline proteinases from fisheries wastes: biochemical characterization and applications.","authors":"Ivana Soledad Friedman, Edgardo Martín Contreras, Analia Verónica Fernández-Gimenez","doi":"10.1111/jfb.16038","DOIUrl":null,"url":null,"abstract":"<p><p>Fish visceral waste, which is normally discarded, is considered one of the richest sources of proteinases with potential biotechnological applications. For this reason, alkaline proteinases from viscera of Argentine hake Merluccius hubbsi, Brazilian flathead Percophis brasiliensis, Brazilian codling Urophycis brasiliensis, and stripped weakfish Cynoscion guatucupa were characterized. Individuals were caught by a commercial fleet off the coast of the Argentinean Sea. The intestine and pyloric caeca were dissected out and then minced and triturated with distilled water. The proteinase activity of P. brasiliensis extracts was enhanced by all the ions tested (Mn<sup>2+</sup>, K<sup>+</sup>, Na<sup>+</sup>, Ca<sup>+2</sup>) while the enzymes of the other species were stable in the presence of those ions, retaining more than 60% of their enzymatic activity. Alkaline proteinases of all species showed extreme stability to 5% v/v surfactants at 60 min (Sodium dodecyl sulfate, Triton X-100, Tween 20, Tween 80), and relative stability toward an 6% v/v oxidizing agent (H<sub>2</sub>O<sub>2</sub>) and organic solvents 80% (acetone, isopropanol, methanol, ethanol). The enzyme extracts were incubated for 60 min with these compounds. Interestingly, alkaline proteinases from all species were compatible with the commercial detergents (Ala, Skip, and Ace). These results demonstrate that proteinases recovered from a no-cost sample such as fishery residues can be used for industrial applications, such as detergent formulations.</p>","PeriodicalId":15794,"journal":{"name":"Journal of fish biology","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of fish biology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/jfb.16038","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0
Abstract
Fish visceral waste, which is normally discarded, is considered one of the richest sources of proteinases with potential biotechnological applications. For this reason, alkaline proteinases from viscera of Argentine hake Merluccius hubbsi, Brazilian flathead Percophis brasiliensis, Brazilian codling Urophycis brasiliensis, and stripped weakfish Cynoscion guatucupa were characterized. Individuals were caught by a commercial fleet off the coast of the Argentinean Sea. The intestine and pyloric caeca were dissected out and then minced and triturated with distilled water. The proteinase activity of P. brasiliensis extracts was enhanced by all the ions tested (Mn2+, K+, Na+, Ca+2) while the enzymes of the other species were stable in the presence of those ions, retaining more than 60% of their enzymatic activity. Alkaline proteinases of all species showed extreme stability to 5% v/v surfactants at 60 min (Sodium dodecyl sulfate, Triton X-100, Tween 20, Tween 80), and relative stability toward an 6% v/v oxidizing agent (H2O2) and organic solvents 80% (acetone, isopropanol, methanol, ethanol). The enzyme extracts were incubated for 60 min with these compounds. Interestingly, alkaline proteinases from all species were compatible with the commercial detergents (Ala, Skip, and Ace). These results demonstrate that proteinases recovered from a no-cost sample such as fishery residues can be used for industrial applications, such as detergent formulations.
期刊介绍:
The Journal of Fish Biology is a leading international journal for scientists engaged in all aspects of fishes and fisheries research, both fresh water and marine. The journal publishes high-quality papers relevant to the central theme of fish biology and aims to bring together under one cover an overall picture of the research in progress and to provide international communication among researchers in many disciplines with a common interest in the biology of fish.