MAP3K4 signaling regulates HDAC6 and TRAF4 coexpression and stabilization in trophoblast stem cells.

IF 4 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Hannah A Nelson, Nathan A Mullins, Amy N Abell
{"title":"MAP3K4 signaling regulates HDAC6 and TRAF4 coexpression and stabilization in trophoblast stem cells<sup>†</sup>.","authors":"Hannah A Nelson, Nathan A Mullins, Amy N Abell","doi":"10.1016/j.jbc.2024.108116","DOIUrl":null,"url":null,"abstract":"<p><p>Mitogen-activated protein kinase kinase kinase 4 (MAP3K4) promotes fetal and placental growth and development, with MAP3K4 kinase inactivation resulting in placental insufficiency and fetal growth restriction. MAP3K4 promotes key signaling pathways including JNK, p38, and PI3K/Akt, leading to activation of CREB-binding protein. MAP3K4 kinase inactivation results in loss of these pathways and gain of histone deacetylase 6 (HDAC6) expression and activity. Tumor necrosis factor receptor-associated factor 4 (TRAF4) binds MAP3K4 and promotes MAP3K4 activation of downstream pathways in the embryo; however, the role of TRAF4 and its association with MAP3K4 in the placenta is unknown. Our analyses of murine placenta single-cell RNA-Seq data showed that Traf4 is coexpressed with Map3k4 in trophoblast stem (TS) cells and labyrinth progenitors, whereas Hdac6 expression is higher in differentiated trophoblasts. We demonstrate that, like HDAC6, TRAF4 expression is increased in MAP3K4 kinase-inactive TS (TS<sup>KI</sup>) cells and upon inhibition of MAP3K4-dependent pathways in WT TS cells. Moreover, Hdac6 shRNA knockdown in TS<sup>KI</sup> cells reduces TRAF4 protein expression. We found that HDAC6 forms a protein complex with TRAF4 in TS cells and promotes TRAF4 expression in the absence of HDAC6 deacetylase activity. Finally, we examine the relationships among MAP3K4, TRAF4, and HDAC6 in the developing placenta, finding a previously unknown switch in coexpression of Traf4 with Map3k4 versus Traf4 with Hdac6 during differentiation of the placental labyrinth. Together, our findings identify previously unknown mechanisms of MAP3K4 and HDAC6 coregulation of TRAF4 in TS cells and highlight these MAP3K4, TRAF4, and HDAC6 associations during placental development.</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":" ","pages":"108116"},"PeriodicalIF":4.0000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2024.108116","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Mitogen-activated protein kinase kinase kinase 4 (MAP3K4) promotes fetal and placental growth and development, with MAP3K4 kinase inactivation resulting in placental insufficiency and fetal growth restriction. MAP3K4 promotes key signaling pathways including JNK, p38, and PI3K/Akt, leading to activation of CREB-binding protein. MAP3K4 kinase inactivation results in loss of these pathways and gain of histone deacetylase 6 (HDAC6) expression and activity. Tumor necrosis factor receptor-associated factor 4 (TRAF4) binds MAP3K4 and promotes MAP3K4 activation of downstream pathways in the embryo; however, the role of TRAF4 and its association with MAP3K4 in the placenta is unknown. Our analyses of murine placenta single-cell RNA-Seq data showed that Traf4 is coexpressed with Map3k4 in trophoblast stem (TS) cells and labyrinth progenitors, whereas Hdac6 expression is higher in differentiated trophoblasts. We demonstrate that, like HDAC6, TRAF4 expression is increased in MAP3K4 kinase-inactive TS (TSKI) cells and upon inhibition of MAP3K4-dependent pathways in WT TS cells. Moreover, Hdac6 shRNA knockdown in TSKI cells reduces TRAF4 protein expression. We found that HDAC6 forms a protein complex with TRAF4 in TS cells and promotes TRAF4 expression in the absence of HDAC6 deacetylase activity. Finally, we examine the relationships among MAP3K4, TRAF4, and HDAC6 in the developing placenta, finding a previously unknown switch in coexpression of Traf4 with Map3k4 versus Traf4 with Hdac6 during differentiation of the placental labyrinth. Together, our findings identify previously unknown mechanisms of MAP3K4 and HDAC6 coregulation of TRAF4 in TS cells and highlight these MAP3K4, TRAF4, and HDAC6 associations during placental development.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biological Chemistry
Journal of Biological Chemistry Biochemistry, Genetics and Molecular Biology-Biochemistry
自引率
4.20%
发文量
1233
期刊介绍: The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信