Variability in HIV-1 transmitted/founder virus susceptibility to combined APOBEC3F and APOBEC3G host restriction.

IF 4 2区 医学 Q2 VIROLOGY
Amit Gaba, Maria Yousefi, Shreoshri Bhattacharjee, Linda Chelico
{"title":"Variability in HIV-1 transmitted/founder virus susceptibility to combined APOBEC3F and APOBEC3G host restriction.","authors":"Amit Gaba, Maria Yousefi, Shreoshri Bhattacharjee, Linda Chelico","doi":"10.1128/jvi.01606-24","DOIUrl":null,"url":null,"abstract":"<p><p>Several APOBEC3 enzymes restrict HIV-1 by deaminating cytosine to form uracil in single-stranded proviral (-)DNA. However, HIV-1 Vif counteracts their activity by inducing their proteasomal degradation. This counteraction by Vif is incomplete, as evidenced by footprints of APOBEC3-mediated mutations within integrated proviral genomes of people living with HIV-1. The relative contributions of multiple APOBEC3s in HIV-1 restriction are not fully understood. Here, we investigated the activity of co-expressed APOBEC3F and APOBEC3G against HIV-1 Subtype B and Subtype C transmitted/founder viruses. We determined that APOBEC3F interacts with APOBEC3G through its N-terminal domain. We provide evidence that this results in protection of APOBEC3F from Vif-mediated degradation because the APOBEC3F N-terminal domain contains residues required for recognition by Vif. We also found that HIV-1 Subtype C Vifs, but not Subtype B Vifs, were less active against APOBEC3G when APOBEC3F and APOBEC3G were co-expressed. Consequently, when APOBEC3F and APOBEC3G were expressed together in a single cycle of HIV-1 replication, only HIV-1 Subtype C viruses showed a decrease in relative infectivity compared to when APOBEC3G was expressed alone. Inspection of Vif amino acid sequences revealed that differences in amino acids adjacent to conserved sequences influenced the Vif-mediated APOBEC3 degradation ability. Altogether, the data provide a possible mechanism for how combined expression of APOBEC3F and APOBEC3G could contribute to mutagenesis of HIV-1 proviral genomes despite the presence of Vif and provide evidence for variability in the Vif-mediated APOBEC3 degradation ability of transmitted/founder viruses.IMPORTANCEAPOBEC3 enzymes suppress HIV-1 infection by inducing cytosine deamination in proviral DNA but are hindered by HIV-1 Vif, which leads to APOBEC3 proteasomal degradation. Moving away from traditional studies that used lab-adapted HIV-1 Subtype B viruses and singular APOBEC3 enzymes, we examined how transmitted/founder isolates of HIV-1 replicated in the presence of APOBEC3F and APOBEC3G. We determined that APOBEC3F interacts with APOBEC3G through its N-terminal domain and that APOBEC3F, like APOBEC3G, has Vif-mediated degradation determinants in the N-terminal domain. This enabled APOBEC3F to be partially resistant to Vif-mediated degradation. We also demonstrated that Subtype C is more susceptible than Subtype B HIV-1 to combined APOBEC3F/APOBEC3G restriction and identified Vif variations influencing APOBEC3 degradation ability. Importantly, Vif amino acid variation outside of previously identified conserved regions mediated APOBEC3 degradation and HIV-1 Vif subtype-specific differences. Altogether, we identified factors that affect susceptibility to APOBEC3F/APOBEC3G restriction.</p>","PeriodicalId":17583,"journal":{"name":"Journal of Virology","volume":" ","pages":"e0160624"},"PeriodicalIF":4.0000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Virology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1128/jvi.01606-24","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Several APOBEC3 enzymes restrict HIV-1 by deaminating cytosine to form uracil in single-stranded proviral (-)DNA. However, HIV-1 Vif counteracts their activity by inducing their proteasomal degradation. This counteraction by Vif is incomplete, as evidenced by footprints of APOBEC3-mediated mutations within integrated proviral genomes of people living with HIV-1. The relative contributions of multiple APOBEC3s in HIV-1 restriction are not fully understood. Here, we investigated the activity of co-expressed APOBEC3F and APOBEC3G against HIV-1 Subtype B and Subtype C transmitted/founder viruses. We determined that APOBEC3F interacts with APOBEC3G through its N-terminal domain. We provide evidence that this results in protection of APOBEC3F from Vif-mediated degradation because the APOBEC3F N-terminal domain contains residues required for recognition by Vif. We also found that HIV-1 Subtype C Vifs, but not Subtype B Vifs, were less active against APOBEC3G when APOBEC3F and APOBEC3G were co-expressed. Consequently, when APOBEC3F and APOBEC3G were expressed together in a single cycle of HIV-1 replication, only HIV-1 Subtype C viruses showed a decrease in relative infectivity compared to when APOBEC3G was expressed alone. Inspection of Vif amino acid sequences revealed that differences in amino acids adjacent to conserved sequences influenced the Vif-mediated APOBEC3 degradation ability. Altogether, the data provide a possible mechanism for how combined expression of APOBEC3F and APOBEC3G could contribute to mutagenesis of HIV-1 proviral genomes despite the presence of Vif and provide evidence for variability in the Vif-mediated APOBEC3 degradation ability of transmitted/founder viruses.IMPORTANCEAPOBEC3 enzymes suppress HIV-1 infection by inducing cytosine deamination in proviral DNA but are hindered by HIV-1 Vif, which leads to APOBEC3 proteasomal degradation. Moving away from traditional studies that used lab-adapted HIV-1 Subtype B viruses and singular APOBEC3 enzymes, we examined how transmitted/founder isolates of HIV-1 replicated in the presence of APOBEC3F and APOBEC3G. We determined that APOBEC3F interacts with APOBEC3G through its N-terminal domain and that APOBEC3F, like APOBEC3G, has Vif-mediated degradation determinants in the N-terminal domain. This enabled APOBEC3F to be partially resistant to Vif-mediated degradation. We also demonstrated that Subtype C is more susceptible than Subtype B HIV-1 to combined APOBEC3F/APOBEC3G restriction and identified Vif variations influencing APOBEC3 degradation ability. Importantly, Vif amino acid variation outside of previously identified conserved regions mediated APOBEC3 degradation and HIV-1 Vif subtype-specific differences. Altogether, we identified factors that affect susceptibility to APOBEC3F/APOBEC3G restriction.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Virology
Journal of Virology 医学-病毒学
CiteScore
10.10
自引率
7.40%
发文量
906
审稿时长
1 months
期刊介绍: Journal of Virology (JVI) explores the nature of the viruses of animals, archaea, bacteria, fungi, plants, and protozoa. We welcome papers on virion structure and assembly, viral genome replication and regulation of gene expression, genetic diversity and evolution, virus-cell interactions, cellular responses to infection, transformation and oncogenesis, gene delivery, viral pathogenesis and immunity, and vaccines and antiviral agents.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信