The CP123L protein of African swine fever virus is a membrane-associated, palmitoylated protein required for viral replication.

IF 4 2区 医学 Q2 VIROLOGY
Xiangyu Guan, Tao Wang, Yuxuan Gao, Huanjie Zhai, Fengwei Jiang, Qinghe Hou, Xiaoke Yang, Hongxia Wu, Lian-Feng Li, Yuzi Luo, Su Li, Yuan Sun, Hua-Ji Qiu, Yongfeng Li
{"title":"The CP123L protein of African swine fever virus is a membrane-associated, palmitoylated protein required for viral replication.","authors":"Xiangyu Guan, Tao Wang, Yuxuan Gao, Huanjie Zhai, Fengwei Jiang, Qinghe Hou, Xiaoke Yang, Hongxia Wu, Lian-Feng Li, Yuzi Luo, Su Li, Yuan Sun, Hua-Ji Qiu, Yongfeng Li","doi":"10.1128/jvi.01445-24","DOIUrl":null,"url":null,"abstract":"<p><p>African swine fever (ASF) is a highly contagious and often lethal disease caused by African swine fever virus (ASFV) in pigs. Protein palmitoylation is a prevalent posttranslational lipid modification that can modulate viral replication. In this study, we investigated the palmitoylation of ASFV proteins. The results revealed that the CP123L protein (pCP123L) of ASFV was palmitoylated at the cysteine residue at position 18 (C18). To further elucidate the functional significance of this posttranslational modification, abolishing palmitoylation through a cysteine-to-serine mutation at C18 (C18S) of pCP123L (pCP123L/C18S) or treatment with 2-bromopalmitate (2-BP), a palmitoylation inhibitor, led to altered cytomembrane localization and migration rate of pCP123L. Furthermore, depalmitoylation achieved through 2-BP treatment significantly suppressed ASFV replication and exerted a profound impact on virus budding. Remarkably, blocking pCP123L palmitoylation <i>via</i> the C18S mutation resulted in decreased replication of ASFV. Our study represents the first evidence for the presence of palmitoylation in ASFV proteins and underscores its crucial role in viral replication.</p><p><strong>Importance: </strong>African swine fever (ASF) poses a significant threat to the global pig industry. The causative agent of ASF is African swine fever virus (ASFV), which encodes more than 165 proteins. Protein palmitoylation, a common posttranslational lipid modification, can modulate viral infection. To date, the ASFV proteins that undergo palmitoylation and their impacts on viral replication remain elusive. In this study, the CP123L protein (pCP123L) of ASFV was identified as a palmitoylated protein, and the cysteine residue at position 18 of pCP123L is responsible for its palmitoylation. Notably, our findings demonstrate that palmitoylation plays significant roles in ASFV protein functions and facilitates viral replication.</p>","PeriodicalId":17583,"journal":{"name":"Journal of Virology","volume":" ","pages":"e0144524"},"PeriodicalIF":4.0000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Virology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1128/jvi.01445-24","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

African swine fever (ASF) is a highly contagious and often lethal disease caused by African swine fever virus (ASFV) in pigs. Protein palmitoylation is a prevalent posttranslational lipid modification that can modulate viral replication. In this study, we investigated the palmitoylation of ASFV proteins. The results revealed that the CP123L protein (pCP123L) of ASFV was palmitoylated at the cysteine residue at position 18 (C18). To further elucidate the functional significance of this posttranslational modification, abolishing palmitoylation through a cysteine-to-serine mutation at C18 (C18S) of pCP123L (pCP123L/C18S) or treatment with 2-bromopalmitate (2-BP), a palmitoylation inhibitor, led to altered cytomembrane localization and migration rate of pCP123L. Furthermore, depalmitoylation achieved through 2-BP treatment significantly suppressed ASFV replication and exerted a profound impact on virus budding. Remarkably, blocking pCP123L palmitoylation via the C18S mutation resulted in decreased replication of ASFV. Our study represents the first evidence for the presence of palmitoylation in ASFV proteins and underscores its crucial role in viral replication.

Importance: African swine fever (ASF) poses a significant threat to the global pig industry. The causative agent of ASF is African swine fever virus (ASFV), which encodes more than 165 proteins. Protein palmitoylation, a common posttranslational lipid modification, can modulate viral infection. To date, the ASFV proteins that undergo palmitoylation and their impacts on viral replication remain elusive. In this study, the CP123L protein (pCP123L) of ASFV was identified as a palmitoylated protein, and the cysteine residue at position 18 of pCP123L is responsible for its palmitoylation. Notably, our findings demonstrate that palmitoylation plays significant roles in ASFV protein functions and facilitates viral replication.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Virology
Journal of Virology 医学-病毒学
CiteScore
10.10
自引率
7.40%
发文量
906
审稿时长
1 months
期刊介绍: Journal of Virology (JVI) explores the nature of the viruses of animals, archaea, bacteria, fungi, plants, and protozoa. We welcome papers on virion structure and assembly, viral genome replication and regulation of gene expression, genetic diversity and evolution, virus-cell interactions, cellular responses to infection, transformation and oncogenesis, gene delivery, viral pathogenesis and immunity, and vaccines and antiviral agents.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信