Identification of a potential anti-viral drug targeting allosteric site of papain-like protease against rubella using a molecular modeling approach.

IF 2.7 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Vrinda Salvi, Purva Khodke, Pruthanka Patil, Bajarang Vasant Kumbhar
{"title":"Identification of a potential anti-viral drug targeting allosteric site of papain-like protease against rubella using a molecular modeling approach.","authors":"Vrinda Salvi, Purva Khodke, Pruthanka Patil, Bajarang Vasant Kumbhar","doi":"10.1080/07391102.2024.2443132","DOIUrl":null,"url":null,"abstract":"<p><p>Rubella virus (RUBV) is responsible for causing rashes, lymphadenopathy, and fever which are the hallmarks of an acute viral illness called Rubella. For RUBV replication, the non-structural polyprotein p200 must be cleaved by the rubella papain-like protease (RubPro) into the multifunctional proteins p150 and p90. Hence, RubPro is an attractive target for anti-viral drug discovery. Moreover, the binding of host Calmodulin 1 (CaM) to RubPro modulates the protease activity and infectivity of RUBV. However, the binding mode of CaM and RubPro remain uncertain. Therefore, our investigation not only delves into understanding the interaction between CaM and the RubPro but also aims to recognize the allosteric site for the development of antiviral protease inhibitors. In this study, we interestingly identified the allosteric site in close vicinity with the CaM binding domain of RubPro. Considering the allosteric site of RubPro, we employed a computational modelling approach to identify the potential antiviral compounds. Leveraging ChemDiv protease inhibitors database, we employed structure-based virtual screening, ADME, pass prediction, and docking studies, unveiling three potent compounds: C073-2897, C073-3328, and C073-3368. Moreover, molecular dynamics simulation analysis revealed that these compounds affect the RubPro structure and dynamics and may also influence the binding of CaM with RubPro. Notably, binding energy calculation showed that the compound C073-3328 exhibits higher binding affinity, while C073-3368 displays a lower binding affinity with RubPro. These compounds signify potential for managing RUBV infections and pioneering effective antiviral treatments. This computational study could pave the way for improved methods of managing or controlling rubella infections.</p>","PeriodicalId":15272,"journal":{"name":"Journal of Biomolecular Structure & Dynamics","volume":" ","pages":"1-17"},"PeriodicalIF":2.7000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular Structure & Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/07391102.2024.2443132","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Rubella virus (RUBV) is responsible for causing rashes, lymphadenopathy, and fever which are the hallmarks of an acute viral illness called Rubella. For RUBV replication, the non-structural polyprotein p200 must be cleaved by the rubella papain-like protease (RubPro) into the multifunctional proteins p150 and p90. Hence, RubPro is an attractive target for anti-viral drug discovery. Moreover, the binding of host Calmodulin 1 (CaM) to RubPro modulates the protease activity and infectivity of RUBV. However, the binding mode of CaM and RubPro remain uncertain. Therefore, our investigation not only delves into understanding the interaction between CaM and the RubPro but also aims to recognize the allosteric site for the development of antiviral protease inhibitors. In this study, we interestingly identified the allosteric site in close vicinity with the CaM binding domain of RubPro. Considering the allosteric site of RubPro, we employed a computational modelling approach to identify the potential antiviral compounds. Leveraging ChemDiv protease inhibitors database, we employed structure-based virtual screening, ADME, pass prediction, and docking studies, unveiling three potent compounds: C073-2897, C073-3328, and C073-3368. Moreover, molecular dynamics simulation analysis revealed that these compounds affect the RubPro structure and dynamics and may also influence the binding of CaM with RubPro. Notably, binding energy calculation showed that the compound C073-3328 exhibits higher binding affinity, while C073-3368 displays a lower binding affinity with RubPro. These compounds signify potential for managing RUBV infections and pioneering effective antiviral treatments. This computational study could pave the way for improved methods of managing or controlling rubella infections.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biomolecular Structure & Dynamics
Journal of Biomolecular Structure & Dynamics 生物-生化与分子生物学
CiteScore
8.90
自引率
9.10%
发文量
597
审稿时长
2 months
期刊介绍: The Journal of Biomolecular Structure and Dynamics welcomes manuscripts on biological structure, dynamics, interactions and expression. The Journal is one of the leading publications in high end computational science, atomic structural biology, bioinformatics, virtual drug design, genomics and biological networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信