Jianke Li, Ed Parsley, Matt Cravets, Emanuel DeNoia, Cassandra Key, Anita Mathias
{"title":"Phase 1 Studies to Assess Inhaled Seralutinib as a Perpetrator or a Victim of Drug-Drug Interactions in Healthy Participants.","authors":"Jianke Li, Ed Parsley, Matt Cravets, Emanuel DeNoia, Cassandra Key, Anita Mathias","doi":"10.1002/cpdd.1491","DOIUrl":null,"url":null,"abstract":"<p><p>Seralutinib, an inhaled, small-molecule tyrosine kinase inhibitor in clinical development for the treatment of pulmonary arterial hypertension (PAH), was evaluated for its potential as a perpetrator or victim of a metabolic and transporter-based drug-drug interactions in 2 phase 1 studies. In study 1, 24 participants received a cocktail of probe substrates: caffeine (CYP1A2), montelukast (CYP2C8), flurbiprofen (CYP2C9), midazolam (CYP3A), and pravastatin (OATP1B1/1B3), plus digoxin (P-gp) with or without seralutinib. In study 2, 19 participants received seralutinib with/without itraconazole, a strong CYP3A inhibitor, or fosaprepitant, a weak CYP3A inhibitor. Geometric least-squares mean ratios and 90% confidence intervals for maximum observed concentration (C<sub>max</sub>) and area under the plasma concentration-time curve (AUC) were obtained. Safety was monitored throughout the studies. All adverse events were mild or moderate in severity. Seralutinib coadministration increased AUC for midazolam 3.03-fold and caffeine 1.32-fold. The coadministration increased digoxin C<sub>max</sub> 1.28-fold. Seralutinib did not meaningfully alter C<sub>max</sub> and AUC for montelukast, flurbiprofen, or pravastatin. Fosaprepitant and itraconazole increased seralutinib AUC 1.08- and 1.84-fold, respectively. Seralutinib is a moderate CYP3A inhibitor and a weak CYP1A2 inhibitor; it slightly inhibits P-gp. Seralutinib exposure is minimally affected by a weak CYP3A inhibitor but is substantially increased by a strong CYP3A inhibitor.</p>","PeriodicalId":10495,"journal":{"name":"Clinical Pharmacology in Drug Development","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Pharmacology in Drug Development","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/cpdd.1491","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Seralutinib, an inhaled, small-molecule tyrosine kinase inhibitor in clinical development for the treatment of pulmonary arterial hypertension (PAH), was evaluated for its potential as a perpetrator or victim of a metabolic and transporter-based drug-drug interactions in 2 phase 1 studies. In study 1, 24 participants received a cocktail of probe substrates: caffeine (CYP1A2), montelukast (CYP2C8), flurbiprofen (CYP2C9), midazolam (CYP3A), and pravastatin (OATP1B1/1B3), plus digoxin (P-gp) with or without seralutinib. In study 2, 19 participants received seralutinib with/without itraconazole, a strong CYP3A inhibitor, or fosaprepitant, a weak CYP3A inhibitor. Geometric least-squares mean ratios and 90% confidence intervals for maximum observed concentration (Cmax) and area under the plasma concentration-time curve (AUC) were obtained. Safety was monitored throughout the studies. All adverse events were mild or moderate in severity. Seralutinib coadministration increased AUC for midazolam 3.03-fold and caffeine 1.32-fold. The coadministration increased digoxin Cmax 1.28-fold. Seralutinib did not meaningfully alter Cmax and AUC for montelukast, flurbiprofen, or pravastatin. Fosaprepitant and itraconazole increased seralutinib AUC 1.08- and 1.84-fold, respectively. Seralutinib is a moderate CYP3A inhibitor and a weak CYP1A2 inhibitor; it slightly inhibits P-gp. Seralutinib exposure is minimally affected by a weak CYP3A inhibitor but is substantially increased by a strong CYP3A inhibitor.
期刊介绍:
Clinical Pharmacology in Drug Development is an international, peer-reviewed, online publication focused on publishing high-quality clinical pharmacology studies in drug development which are primarily (but not exclusively) performed in early development phases in healthy subjects.