{"title":"A Pilot Study on Developed Shoes That Enhance Gait Parameters Without Increasing Muscle Activity.","authors":"Teppei Abiko, Shin Murata, Yoshihiro Kai, Hideki Nakano, Masashi Sakamoto, Keita Suzuki, Dai Matsuo, Michio Kawaguchi","doi":"10.1155/abb/5587738","DOIUrl":null,"url":null,"abstract":"<p><p>This pilot study investigated the potential of a newly developed shoe design to improve gait parameters without altering muscle activity in healthy women. The shoe design features a V-shaped heel and a high-elasticity midsole, which are intended to enhance stability during heel contact and promote efficient load transfer throughout the gait cycle. Ten study participants underwent a randomized crossover design, wearing developed and general shoes during the trials. Spatiotemporal gait data and muscle activity were measured to assess the impact of the shoe design developed on gait efficiency. Significant improvements in gait speed, step and stride length, and swing time were observed with the developed shoes, indicating improved gait efficiency. Importantly, these improvements were achieved without significant changes in muscle activity, suggesting that the developed shoe design improves gait efficiency without increasing muscle workload. Considering the limitations of the small sample size and the exploratory nature of this pilot study, further research with a larger cohort is necessary to validate these preliminary findings. <b>Trial Registration:</b> Clinical Trial Registry identifier: UMIN000054260.</p>","PeriodicalId":8029,"journal":{"name":"Applied Bionics and Biomechanics","volume":"2024 ","pages":"5587738"},"PeriodicalIF":1.8000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11663044/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Bionics and Biomechanics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1155/abb/5587738","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This pilot study investigated the potential of a newly developed shoe design to improve gait parameters without altering muscle activity in healthy women. The shoe design features a V-shaped heel and a high-elasticity midsole, which are intended to enhance stability during heel contact and promote efficient load transfer throughout the gait cycle. Ten study participants underwent a randomized crossover design, wearing developed and general shoes during the trials. Spatiotemporal gait data and muscle activity were measured to assess the impact of the shoe design developed on gait efficiency. Significant improvements in gait speed, step and stride length, and swing time were observed with the developed shoes, indicating improved gait efficiency. Importantly, these improvements were achieved without significant changes in muscle activity, suggesting that the developed shoe design improves gait efficiency without increasing muscle workload. Considering the limitations of the small sample size and the exploratory nature of this pilot study, further research with a larger cohort is necessary to validate these preliminary findings. Trial Registration: Clinical Trial Registry identifier: UMIN000054260.
期刊介绍:
Applied Bionics and Biomechanics publishes papers that seek to understand the mechanics of biological systems, or that use the functions of living organisms as inspiration for the design new devices. Such systems may be used as artificial replacements, or aids, for their original biological purpose, or be used in a different setting altogether.