Qiaoli Cui, Zhenming Zhang, Lang Qin, Zhaolin Teng, Zhihong Wang, Wei Wu, Linling Fan, Jing Su, Yexuan Hao, Ji Qin, Li Zhang, Qi Wang, Yuan Zhuang, Hangping Zheng, Shuo Zhang, Xiang Geng, Lei Zhu, Yijian Chen, Bin Lu, Yiming Li, Xiaoming Zhu
{"title":"Interleukin-37 promotes wound healing in diabetic mice by inhibiting the MAPK/NLRP3 pathway.","authors":"Qiaoli Cui, Zhenming Zhang, Lang Qin, Zhaolin Teng, Zhihong Wang, Wei Wu, Linling Fan, Jing Su, Yexuan Hao, Ji Qin, Li Zhang, Qi Wang, Yuan Zhuang, Hangping Zheng, Shuo Zhang, Xiang Geng, Lei Zhu, Yijian Chen, Bin Lu, Yiming Li, Xiaoming Zhu","doi":"10.1111/jdi.14389","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims/introduction: </strong>Diabetic foot ulcer (DFU) is a prevalent complication of diabetes characterized by heightened inflammation and impaired wound-healing processes. Interleukin-37 (IL-37) is a natural suppressor of innate inflammation. Here, we aim to investigate the potential of IL-37 in enhancing the healing process of diabetic wounds.</p><p><strong>Materials and methods: </strong>The skin samples of DFU and non-diabetic patients during foot and ankle orthopedic surgery were collected. The IL-37 transgenic mice (IL-37Tg) were created using CRISPR/Cas-mediated genome engineering. Mice were administered streptozotocin (STZ, 150 mg/kg) to induce a diabetic model. After 4 weeks, an equidistant full-thickness excisional wound measuring 8 mm was created on the central back of each mouse and allowed to heal naturally. Body weight and blood glucose levels were measured weekly. The wound area was measured, and skin samples were collected on Day 10 for further Quantitative polymerase chain reaction (qPCR) and WB detection and RNA sequencing analysis.</p><p><strong>Results: </strong>The proinflammation cytokines such as TNF-α and IL-1β and the MAPK signaling pathway were significantly increased in the wound margin of DFU patients. Compared with diabetic mice, diabetic IL-37Tg mice showed a significantly accelerated healing process. The enriched signaling pathways in RNA sequencing included cytokine-cytokine receptor interaction, TNF signaling pathway, and NOD-like receptor signaling pathway. Through QPCR and WB detection, we found that IL-37 could inhibit the activated MAPK and NOD-like signaling pathway, reducing TNF-α, IL-1β, and NLRP3 expression in the diabetic wound.</p><p><strong>Conclusions: </strong>IL-37 promotes skin wound healing in diabetic mice, providing a new possible target for treating diabetic wounds.</p>","PeriodicalId":190,"journal":{"name":"Journal of Diabetes Investigation","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Diabetes Investigation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/jdi.14389","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Aims/introduction: Diabetic foot ulcer (DFU) is a prevalent complication of diabetes characterized by heightened inflammation and impaired wound-healing processes. Interleukin-37 (IL-37) is a natural suppressor of innate inflammation. Here, we aim to investigate the potential of IL-37 in enhancing the healing process of diabetic wounds.
Materials and methods: The skin samples of DFU and non-diabetic patients during foot and ankle orthopedic surgery were collected. The IL-37 transgenic mice (IL-37Tg) were created using CRISPR/Cas-mediated genome engineering. Mice were administered streptozotocin (STZ, 150 mg/kg) to induce a diabetic model. After 4 weeks, an equidistant full-thickness excisional wound measuring 8 mm was created on the central back of each mouse and allowed to heal naturally. Body weight and blood glucose levels were measured weekly. The wound area was measured, and skin samples were collected on Day 10 for further Quantitative polymerase chain reaction (qPCR) and WB detection and RNA sequencing analysis.
Results: The proinflammation cytokines such as TNF-α and IL-1β and the MAPK signaling pathway were significantly increased in the wound margin of DFU patients. Compared with diabetic mice, diabetic IL-37Tg mice showed a significantly accelerated healing process. The enriched signaling pathways in RNA sequencing included cytokine-cytokine receptor interaction, TNF signaling pathway, and NOD-like receptor signaling pathway. Through QPCR and WB detection, we found that IL-37 could inhibit the activated MAPK and NOD-like signaling pathway, reducing TNF-α, IL-1β, and NLRP3 expression in the diabetic wound.
Conclusions: IL-37 promotes skin wound healing in diabetic mice, providing a new possible target for treating diabetic wounds.
期刊介绍:
Journal of Diabetes Investigation is your core diabetes journal from Asia; the official journal of the Asian Association for the Study of Diabetes (AASD). The journal publishes original research, country reports, commentaries, reviews, mini-reviews, case reports, letters, as well as editorials and news. Embracing clinical and experimental research in diabetes and related areas, the Journal of Diabetes Investigation includes aspects of prevention, treatment, as well as molecular aspects and pathophysiology. Translational research focused on the exchange of ideas between clinicians and researchers is also welcome. Journal of Diabetes Investigation is indexed by Science Citation Index Expanded (SCIE).