{"title":"Sevoflurane attenuates hypoxia/reoxygenation-induced cardiomyocyte injury by regulating miR-4454.","authors":"Jianxing Chen, Gaofeng Zhang, Aili Guo, Changliang Mou, Meiqing Du, Shuang Zhai, Mingshan Huang","doi":"10.1093/toxres/tfae219","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Sevoflurane (Sevo) prevents hypoxia/reoxygenation (H/R)-induced cardiomyocytes injury. The expression of miR-4,454 was increased in individuals experiencing an acute myocardial infarction.</p><p><strong>Objective: </strong>The purpose of current investigation was to delved into whether the effects of Sevo on cardiomyocytes are mediated through regulation of miR-4,454 expression.</p><p><strong>Method: </strong>In this study, the expression levels of miR-4,454 and BAG5 were detected by real-time quantitative polymerase chain reaction (RT-qPCR). Cell viability was detected by cell counting kit-8 (CCK-8). The levels of creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH) and cardiac troponin I (cTnI) were detected by enzyme-linked immunosorbent assay (ELISA). Reactive oxygen species (ROS), malondialdehyde (MDA), superoxide dismutase (SOD) and catalase (CAT) were detected using various commercially available kits to assess the level of oxidative stress in the cells. The luciferase reporter gene assay was used to verify the interaction of miR-4,454 with downstream target genes.</p><p><strong>Results: </strong>There was a notable upregulation of miR-4,454 expression in H/R-induced cardiomyocyte models. This was accompanied by a decrease in the viability of myocardial cells induced by H/R and an intensification of the extent of myocardial injury and oxidative stress. However, the detrimental effects were mitigated by the administration of Sevo. miR-4,454 had a target site for binding to BAG5, and its expression was negatively modulated by miR-4,454. An increase in the expression of BAG5 was shown to directly offset the exacerbation of cardiomyocyte damage induced by the overexpression of miR-4,454.</p><p><strong>Conclusion: </strong>Sevo may attenuate H/R-induced cardiomyocyte injury by regulating miR-4454.</p>","PeriodicalId":105,"journal":{"name":"Toxicology Research","volume":"13 6","pages":"tfae219"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11659642/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/toxres/tfae219","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Sevoflurane (Sevo) prevents hypoxia/reoxygenation (H/R)-induced cardiomyocytes injury. The expression of miR-4,454 was increased in individuals experiencing an acute myocardial infarction.
Objective: The purpose of current investigation was to delved into whether the effects of Sevo on cardiomyocytes are mediated through regulation of miR-4,454 expression.
Method: In this study, the expression levels of miR-4,454 and BAG5 were detected by real-time quantitative polymerase chain reaction (RT-qPCR). Cell viability was detected by cell counting kit-8 (CCK-8). The levels of creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH) and cardiac troponin I (cTnI) were detected by enzyme-linked immunosorbent assay (ELISA). Reactive oxygen species (ROS), malondialdehyde (MDA), superoxide dismutase (SOD) and catalase (CAT) were detected using various commercially available kits to assess the level of oxidative stress in the cells. The luciferase reporter gene assay was used to verify the interaction of miR-4,454 with downstream target genes.
Results: There was a notable upregulation of miR-4,454 expression in H/R-induced cardiomyocyte models. This was accompanied by a decrease in the viability of myocardial cells induced by H/R and an intensification of the extent of myocardial injury and oxidative stress. However, the detrimental effects were mitigated by the administration of Sevo. miR-4,454 had a target site for binding to BAG5, and its expression was negatively modulated by miR-4,454. An increase in the expression of BAG5 was shown to directly offset the exacerbation of cardiomyocyte damage induced by the overexpression of miR-4,454.
Conclusion: Sevo may attenuate H/R-induced cardiomyocyte injury by regulating miR-4454.