A photothermal MXene-derived heterojunction for boosted CO2 reduction and tunable CH4 selectivity.

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL
Journal of Colloid and Interface Science Pub Date : 2025-04-01 Epub Date: 2024-12-16 DOI:10.1016/j.jcis.2024.12.108
Yixiang Zhao, Zhen Wang, Weirui Chen, Xi Wang, Yiming Tang, Laisheng Li, Jing Wang
{"title":"A photothermal MXene-derived heterojunction for boosted CO<sub>2</sub> reduction and tunable CH<sub>4</sub> selectivity.","authors":"Yixiang Zhao, Zhen Wang, Weirui Chen, Xi Wang, Yiming Tang, Laisheng Li, Jing Wang","doi":"10.1016/j.jcis.2024.12.108","DOIUrl":null,"url":null,"abstract":"<p><p>We report here a Bi<sub>2</sub>WO<sub>6</sub>/Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>@Ag (BT@Ag) photothermal photocatalyst for efficient CO<sub>2</sub> reduction with tunable CH<sub>4</sub> selectivity. Incorporation of Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene creates well-defined heterointerfaces between Bi<sub>2</sub>WO<sub>6</sub> and Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> and converts thermal energy upon light illumination via photothermal effect, which contributes to a mitigation of the recombination of photo-induced charge carries for a high electron mobility. Density functional theory calculations substantiate that Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> functions as the adsorption site and active center where the transferred electrons are effectively involved in CO<sub>2</sub> reduction for enhanced CH<sub>4</sub> selectivity. Moreover, the in situ deposited Ag nanoparticles demonstrate an exceptional surface plasmon resonance effect, giving rise to additional hot electrons that further benefits the CH<sub>4</sub> generation.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"683 Pt 1","pages":"934-941"},"PeriodicalIF":9.4000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcis.2024.12.108","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We report here a Bi2WO6/Ti3C2Tx@Ag (BT@Ag) photothermal photocatalyst for efficient CO2 reduction with tunable CH4 selectivity. Incorporation of Ti3C2Tx MXene creates well-defined heterointerfaces between Bi2WO6 and Ti3C2Tx and converts thermal energy upon light illumination via photothermal effect, which contributes to a mitigation of the recombination of photo-induced charge carries for a high electron mobility. Density functional theory calculations substantiate that Ti3C2Tx functions as the adsorption site and active center where the transferred electrons are effectively involved in CO2 reduction for enhanced CH4 selectivity. Moreover, the in situ deposited Ag nanoparticles demonstrate an exceptional surface plasmon resonance effect, giving rise to additional hot electrons that further benefits the CH4 generation.

光热mxene衍生异质结促进CO2还原和可调CH4选择性。
我们在这里报道了一种Bi2WO6/Ti3C2Tx@Ag (BT@Ag)光热光催化剂,它具有可调的CH4选择性,可以有效地减少二氧化碳。Ti3C2Tx MXene的加入在Bi2WO6和Ti3C2Tx之间形成了定义良好的异质界面,并通过光热效应在光照射下转换热能,这有助于减轻光诱导载流子的重组,从而获得高电子迁移率。密度泛函理论计算证实,Ti3C2Tx作为吸附位点和活性中心,其转移电子有效参与CO2还原,提高了CH4选择性。此外,原位沉积的银纳米颗粒表现出特殊的表面等离子体共振效应,产生额外的热电子,进一步有利于CH4的产生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信