Molecular Dynamics Simulations on Heat Transport of Nanoconfined Water under Electric Fields: Effect of Nanochannel Size.

IF 2.8 2区 化学 Q3 CHEMISTRY, PHYSICAL
Wen-Qing Guo, Jie-Wen Deng, Bing-Bing Wang
{"title":"Molecular Dynamics Simulations on Heat Transport of Nanoconfined Water under Electric Fields: Effect of Nanochannel Size.","authors":"Wen-Qing Guo, Jie-Wen Deng, Bing-Bing Wang","doi":"10.1021/acs.jpcb.4c06213","DOIUrl":null,"url":null,"abstract":"<p><p>When water is confined in a nanochannel, its thermodynamic and kinetic properties change dramatically compared to the macroscale. To investigate these phenomena, we conducted nonequilibrium molecular dynamics simulations on the heat transfer in copper-water nanochannels with lengths ranging from 12 to 20 nm in the absence and presence of an electric field. The results indicate that in the absence of an electric field (<i>L</i><sub><i>z</i></sub> = 12-20 nm), the binding force between water molecules in the 20 nm nanochannel is the weakest, facilitating thermal motion in the liquid phase. When compared to the 12 nm nanochannel, the enhancement rate of the thermal conductivity is 19.53%. In the presence of a uniform electric field in the positive <i>z</i>-direction (<i>L</i><sub><i>z</i></sub> = 12-16 nm), water molecules in the 16 nm nanochannel are more readily frozen into ice crystal structures. This change in the mode of heat transfer shifts from the thermal diffusion of water molecules to the vibrations between copper atoms and the ice crystal, resulting in a significant increase in the thermal conductivity of water.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.4c06213","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

When water is confined in a nanochannel, its thermodynamic and kinetic properties change dramatically compared to the macroscale. To investigate these phenomena, we conducted nonequilibrium molecular dynamics simulations on the heat transfer in copper-water nanochannels with lengths ranging from 12 to 20 nm in the absence and presence of an electric field. The results indicate that in the absence of an electric field (Lz = 12-20 nm), the binding force between water molecules in the 20 nm nanochannel is the weakest, facilitating thermal motion in the liquid phase. When compared to the 12 nm nanochannel, the enhancement rate of the thermal conductivity is 19.53%. In the presence of a uniform electric field in the positive z-direction (Lz = 12-16 nm), water molecules in the 16 nm nanochannel are more readily frozen into ice crystal structures. This change in the mode of heat transfer shifts from the thermal diffusion of water molecules to the vibrations between copper atoms and the ice crystal, resulting in a significant increase in the thermal conductivity of water.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.80
自引率
9.10%
发文量
965
审稿时长
1.6 months
期刊介绍: An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信