Interactions and Oscillatory Dynamics of Chemically Powered Soft Swimmers.

IF 2.8 2区 化学 Q3 CHEMISTRY, PHYSICAL
Suzanne Ahmed, Juan Perez-Mercader
{"title":"Interactions and Oscillatory Dynamics of Chemically Powered Soft Swimmers.","authors":"Suzanne Ahmed, Juan Perez-Mercader","doi":"10.1021/acs.jpcb.4c07069","DOIUrl":null,"url":null,"abstract":"<p><p>We report the interactions and dynamics of chemically powered soft swimmers that undergo autonomous oscillatory motion. The interaction of autonomous entities is the basis for the development of collective behaviors among biological organisms. Collective behaviors enable organisms to efficiently attain food and coordinate against threats. The basis of these behaviors is the interaction between nearest neighbors. Mimicking these interactions in artificial systems would enable their organization for the performance of complex tasks. Oscillatory phenomena are also ubiquitous in nature. Hence artificial oscillatory systems can serve as the most direct mimics and models of many biological systems. In this work, we report the interactions and dynamics of oscillatory swimmers propelled by the nonlinear oscillatory Belousov-Zhabotinsky (BZ) reaction. Individually, these swimmers displace by undergoing nonfully reciprocal oscillatory motion in conjunction with the BZ reaction. We find that, in addition to their individual oscillatory motion, multiple BZ swimmers exhibit successive oscillatory changes in their inter swimmer distance. This oscillatory attraction and repulsion between adjacent swimmers occurs in conjunction with the BZ waves and oxidation state of the catalyst. The effect of swimmer size and number on these dynamic interactions is interrogated. The level of chemical synchronization between multiple swimmers is determined. This work is a starting point for the design of collective behaviors utilizing autonomous chemically propelled soft swimmers.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.4c07069","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We report the interactions and dynamics of chemically powered soft swimmers that undergo autonomous oscillatory motion. The interaction of autonomous entities is the basis for the development of collective behaviors among biological organisms. Collective behaviors enable organisms to efficiently attain food and coordinate against threats. The basis of these behaviors is the interaction between nearest neighbors. Mimicking these interactions in artificial systems would enable their organization for the performance of complex tasks. Oscillatory phenomena are also ubiquitous in nature. Hence artificial oscillatory systems can serve as the most direct mimics and models of many biological systems. In this work, we report the interactions and dynamics of oscillatory swimmers propelled by the nonlinear oscillatory Belousov-Zhabotinsky (BZ) reaction. Individually, these swimmers displace by undergoing nonfully reciprocal oscillatory motion in conjunction with the BZ reaction. We find that, in addition to their individual oscillatory motion, multiple BZ swimmers exhibit successive oscillatory changes in their inter swimmer distance. This oscillatory attraction and repulsion between adjacent swimmers occurs in conjunction with the BZ waves and oxidation state of the catalyst. The effect of swimmer size and number on these dynamic interactions is interrogated. The level of chemical synchronization between multiple swimmers is determined. This work is a starting point for the design of collective behaviors utilizing autonomous chemically propelled soft swimmers.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.80
自引率
9.10%
发文量
965
审稿时长
1.6 months
期刊介绍: An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信