Design and Synthesis of Novel Dual-Functional Protic Ionic Liquids with a Superior High CO2 Absorption Efficiency.

IF 2.8 2区 化学 Q3 CHEMISTRY, PHYSICAL
Jing Ma, Yaxuan Du, Meizhe Liu, Yamei Zhou, Xiejun Wang, Baohe Wang, Jing Zhu, Mingxuan Zhu
{"title":"Design and Synthesis of Novel Dual-Functional Protic Ionic Liquids with a Superior High CO<sub>2</sub> Absorption Efficiency.","authors":"Jing Ma, Yaxuan Du, Meizhe Liu, Yamei Zhou, Xiejun Wang, Baohe Wang, Jing Zhu, Mingxuan Zhu","doi":"10.1021/acs.jpcb.4c06299","DOIUrl":null,"url":null,"abstract":"<p><p>As a predictive tool, quantum chemical calculations can be used to design protic ionic liquids (PILs) and predict the result. By adding anionic negative potential sites, two dual-functional PILs diethylenetriamine-barbituric acid [C<sub>4</sub>H<sub>14</sub>N<sub>3</sub>]<sub>2</sub>[C<sub>4</sub>H<sub>2</sub>N<sub>2</sub>O<sub>3</sub>] and diethylenetriamine-ethylenolactonium [C<sub>4</sub>H<sub>14</sub>N<sub>3</sub>]<sub>2</sub>[C<sub>3</sub>H<sub>2</sub>N<sub>2</sub>O<sub>2</sub>] were designed. The simulation results indicated that multisite absorption of anions and cations resulted in an expected absorption ratio exceeding 3:1 (mol CO<sub>2</sub>:mol ILs). Furthermore, the Gibbs free energy and enthalpy barrier were calculated. Based on this, the two PILs were synthesized in a controlled manner, and the experimental results demonstrated that 0.25 mol/L [C<sub>4</sub>H<sub>14</sub>N<sub>3</sub>]<sub>2</sub>[C<sub>4</sub>H<sub>2</sub>N<sub>2</sub>O<sub>3</sub>] and [C<sub>4</sub>H<sub>14</sub>N<sub>3</sub>]<sub>2</sub>[C<sub>3</sub>H<sub>2</sub>N<sub>2</sub>O<sub>2</sub>] exhibited a superior CO<sub>2</sub> absorption capacity of 3.152 and 3.466 mol CO<sub>2</sub>/mol ILs, respectively. After five adsorption-desorption experiments, the regeneration rates of [C<sub>4</sub>H<sub>14</sub>N<sub>3</sub>]<sub>2</sub>[C<sub>3</sub>H<sub>2</sub>N<sub>2</sub>O<sub>2</sub>] were all higher than 90%. Finally, the reaction mechanism for CO<sub>2</sub> capture in these PILs was revealed that the significant increase in capacity could be attributed to the combined absorption of double negative potential N atoms on anions and primary and secondary amines on cations by using <sup>13</sup>C NMR.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.4c06299","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

As a predictive tool, quantum chemical calculations can be used to design protic ionic liquids (PILs) and predict the result. By adding anionic negative potential sites, two dual-functional PILs diethylenetriamine-barbituric acid [C4H14N3]2[C4H2N2O3] and diethylenetriamine-ethylenolactonium [C4H14N3]2[C3H2N2O2] were designed. The simulation results indicated that multisite absorption of anions and cations resulted in an expected absorption ratio exceeding 3:1 (mol CO2:mol ILs). Furthermore, the Gibbs free energy and enthalpy barrier were calculated. Based on this, the two PILs were synthesized in a controlled manner, and the experimental results demonstrated that 0.25 mol/L [C4H14N3]2[C4H2N2O3] and [C4H14N3]2[C3H2N2O2] exhibited a superior CO2 absorption capacity of 3.152 and 3.466 mol CO2/mol ILs, respectively. After five adsorption-desorption experiments, the regeneration rates of [C4H14N3]2[C3H2N2O2] were all higher than 90%. Finally, the reaction mechanism for CO2 capture in these PILs was revealed that the significant increase in capacity could be attributed to the combined absorption of double negative potential N atoms on anions and primary and secondary amines on cations by using 13C NMR.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.80
自引率
9.10%
发文量
965
审稿时长
1.6 months
期刊介绍: An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信